会员
机器人SLAM导航:核心技术与实战
张虎更新时间:2022-01-04 17:30:05
最新章节:附录B 习题开会员,本书免费读 >
机器人SLAM导航的一大痛点是很难做到理论与实战相结合,而本书可谓“百科全书”式讲解,可帮助硬件、软件、算法等不同领域的研究开发人员走出“调参”困境,终结面对硬件和深奥算法时的束手无策,加快算法在实际机器人产品的工程落地与系统性技术突破。本书以ROS编程、传感器、底盘等机器人开发所涉及的软硬件基础知识为切入点,逐步引出SLAM和导航两大领域核心算法,并结合Cartographer、LOAM、ORB-SLAM、VINS、CNN-SLAM、DeepVO、ros-navigation、TEB、RRT等热门开源算法对SLAM和导航的数学原理、代码框架及实操进行深度剖析。本书分为4篇,一共13章。编程基础篇(第1~3章),主要讨论ROS的核心概念、大型C++工程的代码组织方式以及OpenCV图像处理方面的基础知识,为后续学习打好必要的编程基础。硬件基础篇(第4~6章),通过对机器人传感器、机器人主机和机器人底盘的讨论,帮助缺少硬件基础的开发者系统认识机器人硬件,并更好地理解软件与硬件之间的协同关系。SLAM篇(第7~10章),以各个具体的SLAM系统实现为例,进一步介绍SLAM算法的代码框架以及核心算法的细节实现。自主导航篇(第11~13章),基于具体自主导航系统实现,剖析自主导航算法的代码框架以及核心算法的细节实现,并通过一个真实机器人案例向大家介绍应用SLAM导航技术进行开发的完整流程。
品牌:机械工业出版社
上架时间:2022-01-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
张虎
主页
同类热门书
最新上架
- 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
ChatGLM3大模型本地化部署、应用开发与微调
《ChatGLM3大模型本地化部署、应用开发与微调》作为《PyTorch2.0深度学习从零开始学》的姊妹篇,专注于大模型的本地化部署、应用开发以及微调等。《ChatGLM3大模型本地化部署、应用开发与微调》不仅系统地阐述了深度学习大模型的核心理论,更注重实践应用,通过丰富的案例和场景,引导读者从理论走向实践,真正领悟和掌握大模型本地化应用的精髓。全书共分13章,全方位、多角度地展示了大模型本地化计算机13万字 - 会员
生成式AI实战
本书由浅入深地介绍了生成式AI的理论与实践,内容涉及从基础原理到前沿应用,为读者提供了一个系统的认知框架。本书从生成式AI技术的基础工具入手,逐步深入到Transformer模型与GPT的原理和应用,详细介绍了图像生成模型StableDiffusion,以及LangChain与AIAgent的相关知识。书中结合开源代码分析,展示了生成式AI在各行各业的实际应用,并探讨了其在高速发展过程中所面临计算机11.7万字 - 会员
空间智能原理与应用
本书从空间信息处理角度出发,将人工智能领域的理论研究与专业实践相结合,完整介绍人工智能方法及其在空间信息处理中的应用,不仅涵盖人工智能领域的基础概念与基本方法,而且探讨知识图谱、计算智能、新兴机器学习、深度学习等前沿技术,同时介绍人工智能在地理文本大数据、遥感影像、激光点云等空间信息处理中的应用实例,具有较强的代表性和启发性。本书可以作为高等院校空间信息与数字技术、遥感科学与技术等专业高年级本科生计算机23.8万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
大模型实战:微调、优化与私有化部署
本书深入浅出地介绍了现代大型人工智能(ArtificialIntelligence,AI)模型技术,从对话机器人的发展历程和人工智能的理念出发,详细阐述了大模型私有化部署过程,深入剖析了Transformer架构,旨在帮助读者领悟大模型的核心原理和技术细节。本书的讲解风格独树一帜,将深奥的技术术语转化为简洁明了的语言,案例叙述既严谨又充满趣味,让读者在轻松愉快的阅读体验中自然而然地吸收和理解AI计算机15.8万字 - 会员
破解深度学习(基础篇):模型算法与实现
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和必备工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神计算机14.8万字 - 会员
Python视觉分析应用案例实战
本书以Python3.10.7为平台,以实际应用为背景,通过概念、公式、经典应用相结合的形式,深入浅出地介绍了Python图形图像处理经典实现。全书共10章,主要包括绪论、迈进Python、Python图形用户界面、数据可视化分析、图像视觉增强分析、图像视觉复原分析、图像视觉几何变换与校正分析、图像视觉分割技术分析、图像视觉描述与特征提取分析、车牌识别分析等内容。通过本书的学习,读者可领略到Py计算机12.3万字 - 会员
GPT图解:大模型是怎样构建的
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2计算机14万字