![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第3章 力学量用算符表达
3.1 复习笔记
一、算符的运算规则
1.线性算符
凡满足下列运算规则的算符Â,称为线性算符,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image616.jpg?sign=1739276173-tMvOwtWmfnQ8GuLUj68HVIAtqAxmWdnR-0-98030cc081053472f34062b62a03309e)
其中ψ1与Ψ2也是任意两个波函数c1与c2是两个任意常数(一般为复数).
2.算符之和
算符Â与之和.记为Â+
,定义如下:对于任意波函数ψ,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image619.jpg?sign=1739276173-OzdCNrGrV5Z4dPMQpBinwEPhGDvMiceh-0-f1fa702b67a4084731bb3b465df3bf46)
两个线性算符之和仍为线性算符.
3.算符之积
算符Â与之积,记为Â
,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image620.jpg?sign=1739276173-OFrhMmdei9zkhIIqFR0NwQFcExxbTrtk-0-2e338fcc6d4ee7d7c101ddc5b319bd61)
一般说来,算符之积不满足交换律,即这是算符与通常数的运算规则的唯一不同之处.
4.量子力学的基本对易式
(1)对易式
定义对易式(commutator)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image622.jpg?sign=1739276173-k7apj4z9C0HMQmLu6zPFC2foNTgiHLxo-0-9b930f74c774789fba758abeab437b4b)
对空间坐标算符和动量算符有下面的基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image623.jpg?sign=1739276173-HDQJmpejqFksfJpLpCk0iSbcFWVdTqRu-0-8e943ed583834c4c851016aaf122d9bf)
(2)常用对易运算关系式
对易式满足下列代数恒等式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image624.jpg?sign=1739276173-M2ydSx4DOO8oh4d6AxaJhN0kvYy8OstN-0-928b98b665acd7cb448a05d39023d32e)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image625.jpg?sign=1739276173-hP5uC6OOCddQsNRdRWcPzGjp5RXCDnIe-0-2ef2e1d1c3375e21ec068d5bdbfa733e)
(Jacobi恒等式)
(3)角动量的对易式
角动最算符定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image626.jpg?sign=1739276173-A6UQVhvkBgQhWpLyBs7hQxOhp6YOSuS1-0-2251828bd6931d69a17126c25c5dd3d8)
各分量表为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image627.jpg?sign=1739276173-GJbaftZrSVld6DpHlv40RovOexOt0TUw-0-842d7b14c56e56e661ef363b1730d54a)
①角动量算符与空间坐标算符的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image628.jpg?sign=1739276173-R4wDx2FkRgTs3CcGg8qTVWFs2Rmt178F-0-aa8f84b76909caa3cacbd9584256f2b2)
式中称为Levi—Civita符号,是一个三阶反对称张量,定义如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image630.jpg?sign=1739276173-H5psvW86S0N9TuZgpboWeGjvR9LcXXb1-0-315d6ae49a97e47b8cf1779c55b591f2)
②角动量算符与动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image631.jpg?sign=1739276173-WN28N1jacEdFsQeUKOFmeW5OwyRMAXmA-0-afed129de2e764703c716897f4e22aed)
③角动量算符之间的对易关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image632.jpg?sign=1739276173-EluztINN72g3a9csVSz9QOcQktEKnBvI-0-287440e743e48ac3b083369789d3d16a)
分开写出,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image633.jpg?sign=1739276173-I05a2b9Lo5WJKdh2VQt3OnMgwNCEnKkm-0-3db127de4a32ca025838330266a81f9d)
5.逆算符
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image634.jpg?sign=1739276173-6qs2NLOOPVJdcFeEd8L9STouVOCQdbXN-0-7b51fd026a33c6d674342fe16545d41b)
能够唯一地解出ψ,则可以定义算符Â之逆Â-1为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image635.jpg?sign=1739276173-Jml5DS6LIrR8NwxvHJQIU1GaP3cpLCLc-0-7ad059e7bbd51d1faf967d2605c7e571)
6.算符的函数与标积
(1)算符函数
给定一函数F(x),其各阶导数均存在,幂级数展开收敛,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image636.jpg?sign=1739276173-2CItbYvYrgRlfg4TucRwGXZOhsUawuHZ-0-ff166e5f6d3f63e7e1806aedea5958de)
则可定义算符Â的函数F(Â)为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image637.jpg?sign=1739276173-WCqZ9CQxHZXcoahIggwRUSjPz35aYbTE-0-ebd529763b545a9e244d1d5b66d01cf1)
(2)算符的标积
定义一个量子体系的任意两个波函数(态)ψ与的“标积”
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image639.jpg?sign=1739276173-xfukwd1URr8jaOEpUYg6xHwWNqLYFmDg-0-2c2905d053f577a2ce042fc8f44a745f)
以下为常用算符标积运算公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image640.jpg?sign=1739276173-L6XzOd89WvrC77MNmalT6bT3XUriVMcD-0-879d49ebb306dfad51f86df8e443fb14)
式中c1与c2为任意常数.
7.转置算符
算符Â的转置算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image641.jpg?sign=1739276173-XiFN44vlSvHtmwwzyzrwX6hz819SAArS-0-cf93d6108e2cb7e14b28b853e9ff67a0)
式中ψ与φ是任意两个波函数.
8.复共轭算符与厄米共轭算符
算符Â的复共轭算符Â*.定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image642.jpg?sign=1739276173-PejeYodROzghCToxxSbADtDvZ1gb9YI6-0-d9b4e53ad9d99b4b51b194be14ac92dc)
算符Â之厄米共轭算符A定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image643.jpg?sign=1739276173-SbDSPwvqOZFAs2k27bN0ylLd9zY5GSld-0-f0378e784ae8c032094565751d9d4be5)
9.厄米算符
(1)厄米算符定义
满足下列关系的算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image644.jpg?sign=1739276173-lVINuUvKtl3Zn4SKBXvrw1r3NdsDTBUm-0-0beabb69951cf18702d043e0af57a4cc)
称为厄米算符,也称为自共轭算符.两个厄米算符之和仍为厄米算符,但它们的积,一般不是厄米算符,除非(可对易).
(2)厄米算符相关定理
定理 体系的任何状态下,其厄米算符的平均值必为实数.
逆定理 在任何状态下平均值均为实的算符必为厄米算符.
实验上可观测量相应的算符必须是厄米算符.
推论 设Â为厄米算符,则在任意态ψ之下,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image646.jpg?sign=1739276173-Xe9Mpjv010NgfmJ9hImJD7dLNwkIHrvN-0-3a0b8b5649a92febe2671c2cbbb888c2)
2.算符的本征值和本征函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image648.jpg?sign=1739276173-hBQBy1sZDZg2uNK8L2qHBsjcRiO5nZib-0-0f141397b543cc1152fd6e3f322c54c5)
这就是任意两个力学量A与B在任意量子态下的不确定度(涨落)必须满足的关系式,即不确定度关系(uncertainty relation).
特例 对于利用
(h是一个普适常数,不为0),则有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image652.png?sign=1739276173-1pxDqANfK8SScw7Yqm35dFC7egkUSdr1-0-aa26f7621b3e641bc59a0a0c3d0411ea)
2.(l2,lz)的共同本征态
称为球谐(spherical harmonic)函数,它们满足
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image654.jpg?sign=1739276173-HTC5ozy8gCSIOKTZ4yqaZt94AVSmUvv1-0-406e7afeba4b17edefe7788377733651)
l2和lz的本征值者都是量子化的.l称为轨道角动量量子数.m称为磁量子数.
3.对易力学量完全集(CSCO)与对易守恒量完全集(CSCCO)
(1)对易力学量完全集
设有一组彼此独立而且互相对易的厄米算符,它们的共同本征态记为也,表示一组完备的量子.设给定一组量子数a之后,就能够确定体系的唯一一个可能状态,则我们称
构成体系的一组对易可观测量完全集(complete set of commuting observables.简记为CSCO).
(2)对易守恒量完全集
如对易力学照完全集中包含有体系的Hamilton量,则完全集中各力学量都是守恒量,这种完全集又称为对易守恒量完全集(a complete set of commuting conserved observables,简记为CSCCO).
4.关于本征态的完备性的一个定理
定理:设为体系的一个厄米算符,对于体系的任一态
有下界(即总是大于某一个固定的数C),但无上界,则
的本征态的集合,构成体系的态空间中的一个完备集,即体系的任何一个量子态都可以用这一组本征态完全集来展开.
5.量子力学中力学量用厄米算符表达
量子体系的可观测量(力学量)用一个线性厄米算符来描述,也是量子力学的一个基本假定,它们的正确性应该由实验来判定.
该假设的含义如下:
(1)在给定状态ψ之下,力学量A的平均值由下式确定
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image660.png?sign=1739276173-8wuVRH2t7LAQEbQdvhU6geZvptNiPewZ-0-23453551c25286fc625794486737c6f7)
(2)在实验上观测某力学量A,它的可能取值A’就是算符Â的某一个本征值.由于力学量观测值总是实数,所以要求相应的算符为厄米算符.
(3)力学量之间关系也通过相应的算符之间的关系反映出来.例如,两个力学量A与B,在一般情况下,可以同时具有确定的观测值的必要条件为
四、连续谱本征函数的“归一化”
1.连续谱本征函数是不能归一化的
不难看出,只要C≠0
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image662.jpg?sign=1739276173-qw3HQboVVXXL4ediquVdexaYFnqj8nVG-0-74feb485fae34f4c5981ce377e898cef)
即ψP是不能归一化的.
2.δ函数
δ函数定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image663.png?sign=1739276173-7Jd2Er92UYVNL7VKy849CqbqBtDaA8OB-0-5be048345292ec9109d26f60950996ff)
3.箱归一化
正交完备的箱归一化波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image665.jpg?sign=1739276173-42o57c7KzHMyREPHH0HewYorQ0J7wWys-0-443cd5ebb9ca918e5c6becdb2a027d2c)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image667.jpg?sign=1739276173-1US322rBJ2aiSBypJ4J5jyCzmk19R5P7-0-3bf4d675db31fa2f5957c72807304c33)
而δ函数可如下构成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image668.jpg?sign=1739276173-b9t2kKBFo5VvASOZWmiiT5KrtOkeV0qB-0-54f3e371add5b8add94e891dd8edd70b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image669.jpg?sign=1739276173-GHeSNhNqcAvJ3TRp6LDC0EefP1MokUZs-0-c4dd80839b570a95dbe963d33d0c1eb3)
上式式表明相空间一个体积元h3相当于有一个量子态.