![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
3.2 课后习题详解
3.1 设A与B为厄米算符,则和
也是厄米算符,由此证明:任何一个算符F均可分解为
F+与F-均为厄米算符.
证明:因为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image676.jpg?sign=1739274703-2dsBczT9wDOuydEQdyw899lTm91IGfML-0-8a1b3084c8b66c04834376a8eed0d444)
即和
均为厄米算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image679.jpg?sign=1739274703-K8vmn3Jqzy4MUSECrdRXai3AsKjtP0We-0-1d68547b37e6d3cf67292533be21d443)
而F+与F-显然均为厄米算符.
3.2 已知粒子的坐标r和动量p为厄米算符,判断下列算符是否为厄米算符:如果不是,试构造相应的厄米算符.
解:对于l=r×P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image681.jpg?sign=1739274703-8or5gKM8CzmJXcKrMWp40gVSdoebN1r3-0-1ee559f5d5047b5ee4f847d0245d6756)
同理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image682.jpg?sign=1739274703-vHHW91hpubcjq9J3tmn9VvRb8tE6xoQH-0-7c10cd01d3c3b1ab2a6b78f443c8ddef)
所以是厄米算符,
对于r·P,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image684.jpg?sign=1739274703-zOVHMqIVQm1SC3XkkwlGtkZfoWdaOMlZ-0-1872c9e120583827d5f40c37cac9d9d6)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image685.jpg?sign=1739274703-waVQu1OFU6Ztxkm8rzBiMnZlmrUMVqqb-0-1b3b60363fd28f8f41621cd583e8e850)
所以r·P不是厄米算符,而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image686.jpg?sign=1739274703-whg6cN1zJLiM8Cs5rKvxiOTEzJoLA8Om-0-d93711faf5ed8f7ecf5215cf4121674d)
相应的厄米算符为
类似有,本身非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image689.jpg?sign=1739274703-cDskpm0yoJkiiCNsf9msjr08d0oytUa1-0-1dfab5048c446a32ed46079a3e24a9b2)
,本身也非厄米算符,但可以构造相应的厄米算符如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image691.jpg?sign=1739274703-V4l6hD3Tl9UW0AXCA4edZEykhsmEeFd7-0-c41381d0e3995db3ddbfafb587828459)
3.3 设F(x,p)是x和p的整函数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image692.jpg?sign=1739274703-GnE0c55lQHdt45Echzz0pSjZ7tqWSltK-0-fc98864ff7fb8238dd87ece551ff073e)
整函数是指F(x,p)可以展开成.
证明:利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image694.jpg?sign=1739274703-BK8ljdQXCwSkhNMLjZEGabeiRfurrOL9-0-b8b03a3a4300d22e1f9b5de653ed04ea)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image695.jpg?sign=1739274703-HjtKMwYx5gm1BBNVsUQ1EaiwQrewkRHb-0-f4f921c2a184959dd6c205031ca73731)
类似可证明
3.4 定义反对易式,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image698.jpg?sign=1739274703-isjuoVqjM66FmHtcx7FYuOTLjXtMEhxg-0-60227947c6deb11f265011d9471799f6)
证明:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image699.jpg?sign=1739274703-EmIGnYnwDro8a7novRv5nXE8N6EJ3iO2-0-127df0c61ba8765d3c8624cc39932c8f)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image700.jpg?sign=1739274703-b6ndbdHVjqSBiay6rGAICYcSM3F08Jnx-0-487916961f42ff70f38242973c85b6a0)
类似
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image701.jpg?sign=1739274703-GCYbkJc1y8IY5PAgcgIvWoS7jTdnKPxD-0-9fa496f1971eaef12e8116275315dc33)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image702.jpg?sign=1739274703-RihPedkRbEfiFV0MW1MIKOaIeX3DjmLO-0-496a07d8675aa2ae30c5df8a665fbd06)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image703.jpg?sign=1739274703-OyxjLe4dfVsnn5z8peUWoc2oh7U0QYaf-0-1aad4fedee39d27b49316df2aa5276a0)
3.5 设A、B、C为矢量算符,A和B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image704.jpg?sign=1739274703-IRqEtQNRBWefILAaEhZiPjGi5HsP1YuS-0-4a53d522dc4ddfb395174099d837e680)
α、β、γ分别取为为Levi-Civita符号,试验证
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image706.jpg?sign=1739274703-HJ0h9vadH4auf2pfH7TGLs8PbV9ryeUJ-0-e995fd248b8ad57d3d2d9f8372e9250a)
【证明见《量子力学习题精选与剖析》[上],4.1题】
4.1 设A、B、C为矢量算符,其直角坐标系分量为
A=(Ax,Ay,Az)=(A1,A2,A3)
等等,A、B的标积和矢积定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image707.jpg?sign=1739274703-cocmntHs7PS4OiehPnYcTht4UJgXDlYT-0-dc7ca9d3b0291ab49a951bde0acf5547)
等等,试验证下列各式:
A·(B×C)=(A×B)·C (3)
[A×(B×C)]α=A·(BαF)-(A·B)Cα (4)
[(A×B)×C]α=A·(BαC)-Aα(B·C) (5)
证明:式(3)左端写成分量形式,为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image708.jpg?sign=1739274703-g26KWbVEwDMS4xo2e5ZIjbUuuOY1hfvs-0-3cb3ce665fcc2aea23fc91b11d865633)
其中εαβγ为Levi—CiVita符号,即
ε123=ε231=ε312=1
ε132=ε213=ε321=-1 (6)
εαβγ=α、β、γ中有两个或三个相同
式(3)右端也可化成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image709.jpg?sign=1739274703-wu3wl80UJ4T3A5kyzrGNE0QEcTOWkVki-0-20d281246542b59cffad313e9abc1f57)
故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image710.jpg?sign=1739274703-7nQLGSxl1aqoFM35pXaeoEjVZBTK8PhW-0-8ab8a0b173dd52068652b44b6bb5c9ad)
验证式(4),以第一分量为例,左端为
[A×(B×C)]1=A2(B×C)3 A3(B×C)2
=A2(B1C2-B2C1)-A3(B3C1-B1C3)
=A2B1C2+A3B1C3-(A2B2+A383)C1 (8)
而式(4)右端第一分量为
A(B1C)-(A·B)C1=A1B1C1+A2B1C2+A3b1C3-(A1B1+A2B2+A3B3)C1
=A2B1C2+A3B1C3-(A2B2+A3B3)C1
和式(8)相等,故式(4)成立.
同样可以验证式(5).式(4)和(5)有时写成下列矢量形式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image711.jpg?sign=1739274703-6uaKbk4JIGFtUdW1tXeYjaPLA4UIP1Hp-0-2a3578825f7f7f0ecfdedf29b27a0d75)
A与C间联线表示A和C取标积.(但是B的位置在A、C之间)如果A、B、C互相对易,上二式就可写成
A×(B×C)=(A·C)B-(A·B)C
(A×B)×C=(A·C)B-A(B·C)
这正是经典物理中的三重矢积公式.
3.6 设A与B为矢量算符,F为标量算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image712.jpg?sign=1739274703-byC0gkhCLRqQt0gIFG9FkxEwhPQ9axzE-0-f4df4445f6aa9f0cd3293ea1bfedbbbf)
【证明见《量子力学习题精选与剖析》[上],4.2题】
4.2 设A、B为矢量算符,F为标量算符,证明
[F,A·B]=[F,A]·B+A·[F,B] (1)
[F,A×B]=[F,A]×B+A×[F,B] (2)
证明:式(1)右端等于
(FA-AF)·B+A·(FB-BF)=FA·B-A·BF=[F,A·B]
这正是式(1)左端,故式(1)成立.同样可以证明式(2).
3.7 设F是由r与p的整函数算符,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image713.jpg?sign=1739274703-oliWn4bZ2i6OM4clbwN12M7bXC9mpZLH-0-9387ac32713144d7a7405245c0fb587b)
【证明见《量子力学习题精选与剖析》[上],4.3题】
4.3 以,r、表示位置和动量算符,
为轨道角动量算符,
为由r、
构成的标量算符.证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image719.jpg?sign=1739274703-HP5jz05P7ONYbySsSn4aED6EjbWeVG8X-0-5ee24f3ae5d6adee44958ab424ba3a33)
证明:利用对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image720.jpg?sign=1739274703-B8gCrCOP7cmGqqFW6mJ6sBMAEq3MVfRE-0-891b28a351ac2d1bee7baef0afd38ab8)
以及题4.2式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image721.jpg?sign=1739274703-My0sZFRMcAsDWRArBBThCdDBoZ4qY4cd-0-2fbf4024b4cda5ef5a04f0b308993669)
此即式(1)。
3.8 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image722.jpg?sign=1739274703-kBcsNYBJjSczr5PO6luyRBAIgKWkpD0w-0-904775dbb8e9342e86a459742a4440d0)
【证明见《量子力学习题精选与剖析》[上],4.6题】
4.6 证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image723.jpg?sign=1739274703-lY4nAjgRinNUivjXGSfrJSZmPKW3ltO6-0-acfebc12e247e90f0075b6bbe97a6dd5)
证明:
(P×l+l×p)x=pylz-pzly+lypz-lzpy,
=[Py,lz]+[ly,pz]
利用基本对易式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image724.jpg?sign=1739274703-6bLbdwpSCrBV6M9n2lSr4X0uOv8rpsL2-0-10994563c0615b3accdff47e87f31c26)
即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image725.jpg?sign=1739274703-ygkrilMftmZWw3gIsPSLfhr5jHCuEskw-0-550ce73ce0a59018a38163966fd1819f)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image726.jpg?sign=1739274703-Os92DX2jkFyXcYo6Tq4Tqs5wfr7RJBKE-0-9816de64acf4b1f290e32a99a7a14756)
其次,由于px和lx对易,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image727.jpg?sign=1739274703-9G6mXyWThFAIMMYe8iAfrUCVlrp1Li1G-0-c04c0a4adb677c93ed5d77f5fd352057)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image728.jpg?sign=1739274703-RRTMlwSiWHzMtmQbUmkqnfh5CKCDAhCZ-0-223561cfbd242bcc75325e9827dfa014)
3.9 计算
解:利用代数恒等式可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image731.jpg?sign=1739274703-vsBZjGjSlMPErHEdQQQ8tebDNQEfggu0-0-510c903dc4b7ed87bbfa64a575241f4c)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image732.jpg?sign=1739274703-WKMdqBZL3y3A4byY46cHaHQPA7FRlMWz-0-3dbe1f7835c380864f0b08b38e2fb2dc)
3.10 定义径向动量算符
证明:
(a)
(b)
(c)
(d)
(e)
【证明见《量子力学习题精选与剖析》[上],4.5题】
4.5 定义径向动量算符
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image739.jpg?sign=1739274703-e3fjWRLpJXkaI5mZiGaJVBmu8EBSHrkK-0-b7f3676f649d404e6026679c58f2eba0)
试求其球坐标表达式,并求及
.
解:在经典力学中,径向动量就是动量的径向投影,定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image742.jpg?sign=1739274703-VCV3XwEtF8RG7vCFPH8z9MsrtEXyTQ6j-0-86e363447ed2d5fa1d059af812a50e23)
过渡到量子力学,动量算符为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image743.jpg?sign=1739274703-GBprDQNATutK4VFWkncPttiwmPPBSmjX-0-e7851809ee33833547e840a100c01c5a)
由于和r/r不对易,为了保证径向动量算符是Hermite算符,应取
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image745.jpg?sign=1739274703-qhwzv9IHfkMf6qDaNEkkBR2qVoLbBEeB-0-786cb4501050b4b0c45de3abfd32a1de)
此即式(1).利用式(3),易得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image746.jpg?sign=1739274703-j5flxlqqhPQ7eZDjNOVonhotMIa7z972-0-1746a203044b9cb8d9a96d500ea5cc93)
(4)
此即的球坐标表达式.
利用式(4),容易算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image749.jpg?sign=1739274703-Csh5GDeKXQbAhukaY9JbmSs4a622mC2i-0-639c0ef693990d8f3dae8dc8bb0f42cf)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image750.jpg?sign=1739274703-RJVMvZ9cZ3NDXK2HhUhPZsvku9XvIMVW-0-0df82ef3e58acab50770a8af0e714a0e)
3.11 利用不确定度关系估算谐振子的基态能量
解:由于一维谐振子势具有对坐标原点的反射对称性,有
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image751.jpg?sign=1739274703-BeCn5lxV3vYmT8zQY636CcOviluxOdFY-0-7e08d22a9c205026829031a0f9d15c95)
因而
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image752.jpg?sign=1739274703-uNk6FVRZnGcE11NyxAJi0q3SI8UGBsHO-0-3f96dc294ead1a6b9a736232589d8288)
所以在能量本征态下
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image753.jpg?sign=1739274703-qFWfnBoXLxlToBqRjaKcXueK0r9Jrmos-0-9d3e745cbeeab7ebd588dfa031db6273)
按不确定度关系
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image754.jpg?sign=1739274703-xzx4AadgwcZZXF2RzxpvsW408ESi74MT-0-e682b9a2bb1380ae772331f8ad943123)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image755.jpg?sign=1739274703-nbYgqcG5lSyInpbr5okuBZiZlCPjBfaJ-0-f045f4d9bf586510d4babd31a6cd11bf)
它取极小值的条件为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image756.jpg?sign=1739274703-VCmcbZCItJRuoPJDeszb14GpW4bBOohp-0-3b24d1224d21a2db4feb773c3d274692)
由此得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image757.jpg?sign=1739274703-RgGq08SiyDWy3bhcJw2dv4ssMtmbNR4O-0-5d3f80c13b7c05a8d95f88ecf376f3a9)
用此值代入(3)式,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image758.jpg?sign=1739274703-q15ZWNQuDUAYoEOOOokpYBCY5eTQCn03-0-8336192ed1d1b58b76d24e7cc55d5fbc)
所以谐振子基态能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image759.jpg?sign=1739274703-3uNvz8pXukhB8ZKP2xAgd1TmiItHjKSU-0-a5d15be0b3f2f026a36994c760fd2287)
3.12 证明在离散的能量本征态下动量平均值为零.
证明:体系的Hamilton量为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image760.jpg?sign=1739274703-bONaUKxgZfAxcQDN1wEyDaC6Af3PdvBI-0-b3375ff4f755208c577891fed4df3df5)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image761.jpg?sign=1739274703-K7LBXTPjnD0OqS8eOxMJJ8HB3LDDAgcL-0-b2909bd46957dc21e2eceda2267eebd9)
对于束缚态,能量本征值是离散的,本征波函数ψ满足并且可以归一化,
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image764.jpg?sign=1739274703-GAa24CNafbV5FElz2NDoxIYTZr1oP0pa-0-8c73d6d614e45d4841415b1c7e5a58ee)
3.13 证明力学量x与F(px)的不确定度关系以Hamilton量
为例,结合3.12题进行讨论
证明:按《量子力学教程》3.3节,不确定度关系(8),并利用(参见3.3题)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image767.jpg?sign=1739274703-xM1diQjAprrXZ49LT6GAMBXL3LrCTHnA-0-8f15f14826c3112d9a70d004b2908f64)
可以得出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image768.jpg?sign=1739274703-BMoeWC0A5efQqQRrm9c3huXV82AUEtNT-0-c762139260fa8eacee0059aa241f0c2f)
3.14 证明在lx的本征态下
证明:假设ψm是lz的本征态,相应的本征值是,根据角动量的对易关系,
可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image772.jpg?sign=1739274703-EhvMvyMxLvwdfNfb0t6WNBrgBq6K15oi-0-e958b25f46920a055d102fcaca41ac2e)
类似,利用可以证明
3.15 设粒子处于状态下,求
解:是l2及lx的本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image778.jpg?sign=1739274703-K1uwNA7O98jaFOdc0DaUZS4CphfXy4wD-0-77759d6705b27373a28e151eef27f4a1)
按3.14题,,所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image780.jpg?sign=1739274703-tsWJzkc3nE7Zvf5eI9ga7Cg2NEUh3Hqx-0-35fe9a46720b13c6e5a03c457f19d489)
其次证明利用
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image782.jpg?sign=1739274703-HCIo2yMyii859iG7JYdtzXkJcQbE9FBT-0-e93da3457cc9eddc28b14a93537f9505)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image783.jpg?sign=1739274703-BXmYuTD2yjVKQCRf4RduUAPO1mukah5M-0-1b2b1099136ac1292f4c5ca6f804525a)
再利用,可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image785.jpg?sign=1739274703-WrP4cZdWjnZKm9njL2ZH2yjAT2DtWYLD-0-ab79129356c542071f713236ad792b08)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image786.jpg?sign=1739274703-OeYezWXscmOoAcMLTWC574SdDpj5c4mp-0-a022c2031d7b675eceaf0d6628ec5f59)
3.16 设体系处于状态(已归一化,即
(a)lz的可能测值及平均值;
(b)l2的可能测值及相应的概率;
(c)lx的可能测值及相应的概率;
解:Y11和Y20是l2和lz的共同本征函数,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image789.jpg?sign=1739274703-urZOvUeevL8IkCeG7TJEp2fqJOp5KTNT-0-8f4f10b9ad83fba2f87d83bb6a1aeb9c)
(a)lz的可能测值为n,0,所相应的测值概率分别为所以lz的平均值为
.
(b)l2的可能测值为和
,相应的测值概率分别为
.
(c)在(l2,lz)表象中lx的矩阵元公式,(参阅《量子力学教程》第9章,169页,(26)式)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image795.jpg?sign=1739274703-LKmKgiiitMq1xAmgu5A6GyucXBG3aMC0-0-082a1072020900ae3fc25b388725f159)
可求出l=1的3维子空间中的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image797.jpg?sign=1739274703-9dxpzQvNRxdmeCSQQfO0BOUQwFCnCcMK-0-a0c95aa7d381c6fcd52dc2b4d58e92ec)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image798.jpg?sign=1739274703-X9MEodaVXWVEmA8vtIpPNoOqTwUdlN5n-0-c43d51d5e777eed6ff189d26a20cd10f)
Y11态按这3个本征态展开的系数分别为,所以在c1Y11态下,测量lx得
的概率分别是
.
类似在l=2的3维子空间中,的矩阵表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image803.jpg?sign=1739274703-dCGQvJBur5i210s6N6DBh7WDq2MN9QnR-0-a3bbd853618e72747704f1b3a82633b5)
由此可求出其本征值和本征态如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image804.jpg?sign=1739274703-lfiKQtguss03qAr7xNltb0ivg5siLxOz-0-ae793f00d298d126e0ae01fcca9da3ec)
Y20态按这5个本征态展开的系数分别为,所以在c2Y20态下,测量l,得
的概率分别为
而在
态下测量得lx的可能值和概率分别为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image810.png?sign=1739274703-JcN0seoW7u0EB4ekiZki0miAOIlUOOHe-0-8b6635a178abf7a08c8dfda572da3a5d)
3.17 算符A与B不对易,
证明
(对于A与B对易情况,即C=0,显然)
【证明见《量子力学习题精选与剖析》[下],3.7题】
3.7 设算符A与B不对易,[A,B]=C,但是C与A及B对易,即[A,C]=0,[B,C]=0.试证明Baker—Hausdorff公式:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image814.jpg?sign=1739274703-gottMShKAAAuepBeu33hDFLzjLmMkUDV-0-eede963ada249e21baaca63f1e6f8094)
证明:引入参变数λ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image815.jpg?sign=1739274703-qWsU5ViNhuQ90PZvzBtwqDgUV7vMkghv-0-c1bf43f40773bab4e8a7d38196ddefbf)
注意f(0)=1,f(1)=eAeB.上式对λ求导,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image816.jpg?sign=1739274703-P4krNvq8p1Bt1L47Wmgc2aCrB5DSqChx-0-66793890050ebef2a98a4bb4e940bb77)
而根据题3.6式(3)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image817.jpg?sign=1739274703-TgvVIyXk7NYQLISqwYiTP9zZBhhlLDuF-0-92908a2ca0674b2177e7f2a116eaab5a)
代入式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image818.jpg?sign=1739274703-OnSNRaYxqg9UrvcCzJ1GeqTB0o70woee-0-9b5076d750b77c4b2cf6fb051a78ea25)
以f-1(λ)乘之,得到
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image819.jpg?sign=1739274703-CH1NRIyrXfoUHF1G6oGMp0fM6wotKhee-0-034b84bb88b5854c0894a20b1b57ec7b)
积分,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image820.jpg?sign=1739274703-WlyvQ5yQ0cUB7Nh9HFAsmsWMfDiTtaA8-0-b0cfad176bc67f379b1dcbd205a91373)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image821.jpg?sign=1739274703-CLu9Y7kXpme8z26YS5RQ3FBqweN3ZR7Q-0-176958716d04e86aaf8a5f731b53fcf8)
由于f(0)=1,故得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image822.jpg?sign=1739274703-31NvmGnWMWSgDEOYD4zPvbsgdsPKof0E-0-0b13c595b5c3a79173808eda562741e9)
以右乘上式,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image824.jpg?sign=1739274703-iFBmr3rERZslrFFQwAmWBbNxwMEUHZWe-0-c55bd1e6207d639e07ca741cb226508a)
如令A→B,B→A,则C→[B,A]=-C,上式变成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image825.jpg?sign=1739274703-QJOSdafrJA4Azc7Df6kEjspYjohrMiWi-0-0a1f3dcb7527662eb23391a3ec485d9a)
式(6)和(6′)中取λ=1,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image826.jpg?sign=1739274703-ckfOjTssXuaJLAia6EVIGsCdz9IQLkca-0-89408bbd8e572172f6001a59a81c1206)
如A、B对易,则C=0,上式即还原成题3.1式(4).
3.18 设A与B是两个不对易的算符,α为一个参数,证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image827.jpg?sign=1739274703-ieWYAaCfZ0D336waLEnAsdB5zrGEVXMt-0-e8adaa76fac43fa3b665ff5cc12a63d7)
【证明见《量子力学习题精选与剖析》[下],3.5题】
3.5 给定算符,令
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image829.jpg?sign=1739274703-nDLgYYy4GrOFF2lcQY9YPxqvorqeDmEM-0-45493b21ed769691f65a0d070e35b365)
证明
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image830.jpg?sign=1739274703-gaIo1zYKXEOX3UkqlM85D0JpcjZjcx3R-0-a99c78a8967aa2ddea61b247afe2ae71)
证明:引入参变数ξ,作
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image831.jpg?sign=1739274703-vumhxPU8PXxn2gG4OANyv2S1YUOe3dmk-0-5bd04a2afb77497275da22c16cfdd27d)
则
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image832.jpg?sign=1739274703-biWLOq4kMBJMKlYYSfucDBCNVsieyqC8-0-71150092b92df373b079946c1dfdb242)
对ξ求导,即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image833.jpg?sign=1739274703-7GRfZQuou3JHNC2FUgxMtRnw6fjVuMOu-0-ac360c1cb2d5f4b3b81a22e596a094cf)
根据Taylor公式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image834.jpg?sign=1739274703-OGk8BewmThIhYAdOKkoeLEzt38UZEBU2-0-75dc1f7cdc348990ea051a6c07b60bde)
而由式(3),令ξ→0即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image835.jpg?sign=1739274703-fLC7MTwnTYjANVNneuuIn1lDturTednN-0-63425c452dbe86c83c7ccc9337459b98)
代入式(4),并顾及式(2),即得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image836.jpg?sign=1739274703-TP24IXsvw7bSBCosLsN2D81BJ4CWH6s3-0-731646dba41b49fa01772554cb18bda3)
亦即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image837.jpg?sign=1739274703-upCaz08UwaM9LgoTGLgI56pJ4eQsxUM3-0-c35f4aa4b8e06f7186ec446e9ec1b22b)