![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739275585-FzssEMyTDHiPm1ROEGFGBiysn2UEs2Zu-0-7c2ef03d8aa4ecf7c4216c85e7ab76c1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739275585-o1oRhsWDly2LTrgQAJTYiOnLKG1EcbEJ-0-b5ec68ade8b8932905e58eab5481a58d)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739275585-wp765tHePpKHr3DPKiN6Rb6n6a7xgx68-0-5210933dbbba031f11b0b371fbe6a35b)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739275585-qj9dTuPf5IiRNH0Wu1KKWnCKGk7OtI6J-0-f9cb6a09b00337bcd58ad2c98e0f3b1d)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739275585-6Rf2NQCgAVS3nVQpFtQ7GzXbn3mXQ6M6-0-33b07677bad609df7c4ec637add42196)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739275585-ZDbN6FAtIqUz1hfnvUk7dDc9bJQjaryt-0-102d586812b5e23ef1c7a6bbb932ff48)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739275585-fxe3Rml1G3WEIkS6JStJXsdvOGuUOJUe-0-cc2a84e65cd314695b14bd0c9990cb90)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739275585-qvtkaGV4ECkLLylm9pACkELxSwzdGaHx-0-2346765d92d1e0ddd403581f26cec46a)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739275585-GsSh3qnHSpDVOOC8WRKkfxHvJ0R0hQV6-0-9883ea744b83c2e84d0adeeca04e5666)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739275585-kTX62wKLLSjCCdMfvHlH6eS6l7jjGupR-0-e3d9a1557d555955fa7a8353d40e9d46)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739275585-aUw0P6NnJn4TIFy6fHs6CW2RN3rETQgu-0-3736511b26b7b94ae05543f6751ae61f)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739275585-IJQ3CQ1VgXly7OXLJm2P2b0YD76WikU3-0-e05cd1e009167bc7c474ac83b5289570)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739275585-WoZhahKphdl6o02zLT9TVoe2KTkNWTs2-0-a18f0129d21db131862c500f54e8ae7f)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739275585-tmujmW9fBtps9bLTaZLPtvzsrct0H5c9-0-9d7d82dc0b3b4988ac662af911a88b16)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739275585-xiz5B8WUCmh6bbpf2URAWCXSi1rnbfK1-0-2f9df8cb2a7e538339a90444865631b0)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739275585-bgDpZBTPU0AnB5cipvfzLrnYiXPopMZq-0-34be01384105029728024ebc7b006120)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739275585-kP0osK6jOVN1UW7tbvXylRrF64QorJiE-0-2376aea6691c577dcb711f28e6856e86)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739275585-OxjQkb6dYrmyOtLfhA0m4LjFtHMfqrUb-0-500c8b62caa3536e9512121af4b0c85a)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739275585-iZTbwAgLqZJYcKZVKviwgxP0hBSt5WoV-0-d55269c27ee84b0180c15f76975c5b8c)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739275585-Z8fdwGF3CoA5aVn6FvipVfeSfUlEkmS6-0-7d8e4989a715a42a4c6d783c0c29955a)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739275585-gHEcRKSX4iR8xSU5KNKNvBrcvb09H7Cj-0-64f83f2bcdf41b4039c3166b4e4111c0)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739275585-bBSpVbBaUdpZHJmxhXjClhRP3GZTGrpQ-0-a022e8f90e55fadc36d7420831bfb2ea)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739275585-a5aG6Roj9rjhKffTBhYCpSsa3t1TgeXp-0-b40713b1013491c202843bedfffe748b)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739275585-bDbSl49uvkvb5J1r5wvhVzow4VkZ2mSz-0-dd141684a2c3a3c85f5dbf7e31ceadf6)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739275585-W24dez3PSKZCRLxinSGtjcc6V3DvMLna-0-9c9da2b870f8a7e8cad2d3dc125b3579)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739275585-r6Hd9TkXkhzy2lnCz7UJsCVLPlAWjvcF-0-3426d239e6fa1aa907afa9514cee67d7)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739275585-zDyKB49alIr2vid1psCOeQDklMwzANHA-0-a3f42ad5273e95a1cdee09333fede791)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739275585-QcbP1rACUpkQ2xwyEEzMCCDvSKxx9APM-0-fe7a57b7bb43e9867f3b33c745b279b1)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739275585-TkEnVAV0BMOrI3AD1mptCwrWvkiyzKJ2-0-5b29c99e166baa7533c480c8e0299dcc)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739275585-xJGwAZ2hWTL5soDPkGk3vPSmnrzyR0hW-0-8e0e114a003f4c673d5e75f6588b42e0)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739275585-OzDM7gvkgt0Y66u7GZk7WBVHTrphJl9T-0-b2cc60605c62e8668d5a7d061e4999d7)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739275585-tlsSkWzT1TzcuuUZ6d680j8Ra42GZ1yZ-0-ca88b80267db2de55d8602f7a685d4d2)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739275585-o5kbECBIshJejQUGOQbe7wlVMu6YNku4-0-80672de92da0df509918d0c9a670459e)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739275585-TUSu6d1NzXhici5R7k9TUYH7Nks4av34-0-9144cb90adbb4d7cf5eb1317cac8d3bf)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739275585-WvM9ZXEekWTUQtb2Tb9iJG5CT51eqt9Q-0-b4285fe411bd7a551550c0346f09b110)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739275585-G5GBECiwKRp9822shEqOte65M8xSV5f7-0-89df0d265e1fed5c6d69743906dac5b9)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739275585-F80YKFP4g3zV27XVpicTMmS5ATh8huy8-0-e13e3dbcb14cd213d5033d96cce70316)