![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
第2章 一维势场中的粒子
2.1 复习笔记
一、一维势场中粒子能量本征态的一般性质
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image150.png?sign=1739521810-1qAUpdqmx3sCy62IEezhpgPBH7mWWvJf-0-7de913ab0ff81ddaa686aae3c2642342)
此即一维粒子的能量本征方程.以下定理1到4,不仅对一维问题成立,对于三维问题也同样适用.
1.定理l 设φ(x)是方程(1)的一个解,对应的能量本征值为E,则φ*(x)也是方程(3)的一个解,对应的能量也是E.
2.定理2 对应于能量的某个本征值E,总可以找到方程(1)的一组实解,凡是属于E的任何解,均可表示为这一组实解的线性叠加.
3.定理3 设V(x)具有空间反射不变性,V(-x)=v(x).如φ(x)是方程(1)的对应于能量本征值E的解,则φ(-x)也是方程(1)的对应于能量E的解.
(1)空间反射算符P
空间反射算符P定义为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image151.jpg?sign=1739521810-rvX9iGlIVxIig1OhbxqOheBY2iQqYqaR-0-fac9ad16efa70ffed5146ca987df758b)
(2)偶宇称与奇宇称
如果对应于某能量E,方程(3)的解无简并,则解必有确定的宇称(parity)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image152.png?sign=1739521810-d5i3MxG3uY29oJeyVh2Ek7K8KXiyqGNK-0-ee8b350071875f85d57192e6a4f91cb7)
对于上式中C=+1的解
称为偶字称(even parity)解.
对于C=-1的解
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image154.jpg?sign=1739521810-kBTeDAWE928jC1pxBXj8A9nigb7ltSVi-0-6676085ea680a825e5e4fdeec9a743b9)
称为奇宇称(odd parity)解.
4.定理4 设V(-x)=V(x),则对应于任何一个能量本征值E,总可以找到方程(3)的一组解(每一个解都有确定的宇称),而属于能量本征值E的任何解,都可用它们来展开.
5.定理5 对于阶梯形方位势
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image155.png?sign=1739521810-8kYSJNF9fo2WhR19S8VOgHJnfxHLIiwJ-0-e08087bd9db841d22c3b8ef13d39b196)
(V2—V1)有限,则能量本征函数φ(x)及其导数φ'(x)必定是连续的(但如
7.定理7 设粒子在规则(regular)势场V(x)(V(x)无奇点)中运动.如存在束缚态,则必定是不简并的.
二、方势
1.无限深方势阱,离散谱
(1)无限深方势阱本征能量
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image159.png?sign=1739521810-d3fNO8n4sbx0X7mR8P5Ke7h0DyIlAc8T-0-606be76b328a1233ff5cdc78576d954c)
该本征能量表达式说明说明:并非任何E值所相应的波函数都满足本问题所要求的边条件,一维无限深方势阱中粒子的能量是量子化的,即构成的能谱是离散的(disorete).
(2)无限深方势阱本证波函数
归一化波函数表示为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image160.jpg?sign=1739521810-NROSXL9KpXpKQZsGrBIQZAbo5F8dno5n-0-ef76218f27a838b0ac3d2209a5685058)
2.有限深对称方势阱
设
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image161.jpg?sign=1739521810-WwIAI7kLmf1IPbATUVmBGGgCRkw9juzN-0-cb55e37b320a17f6421844d9173e5758)
a为阱宽,V0为势阱高度.以下讨论束缚态(0<E<V0)情况.
束缚态能量本征函数(不简并)必具有确定宇称,因此只能取sinkx或coskx形式.
(1)偶宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image162.png?sign=1739521810-HHGT1ZEBBepagRJmLaIqylLKtqRIGN19-0-0f80984bbf38dc21ba326577bad7cbe2)
引进无量纲参数
有
(2)奇宇称态.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image165.jpg?sign=1739521810-0mvi0n6DEBAo0FIDbEikSZA3mozLUbyx-0-409c0df05a44e6c902950384fcb628b3)
同(1)可得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image166.png?sign=1739521810-DuZ6s61VsUcleTfQumF3ucJ0AVvvknmp-0-09fb856d2a373eb9c09718f5d70b09d1)
只当
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image167.jpg?sign=1739521810-78hlfLIHl67lXiVobHHzC092lj3vhUby-0-ecd6120c0fbee2e16fa506e9e9fda3c5)
时,才可能出现最低的奇宇称能级.
3.束缚态与离散谱
只当粒子能量取某些离散值E1,E2,E3,…时,相应的渡函数φ1(x),φ2(x),φ3(x),…才满足束缚态边条件:|x|→∞处,φ(x)→0.这些能量值即能量本征值,相应波函数即能量本征函数.
4.方势垒的反射与透射
设具有一定能量E的粒子沿x轴正方向射向方势垒(图2-1)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image168.png?sign=1739521810-IZMhy0TAId7gzQqKr814zPwgiuelfpgY-0-d2ebd8ea9699c4850922882f345f021e)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image169.jpg?sign=1739521810-EHdronnKmC0vBrukw2QON9iXJtuIlNf1-0-d214a9e2dd517c82702abcd461247620)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image170.jpg?sign=1739521810-9zXw8VSi2F4VMi60xn3JjWA9LPfoYiXx-0-88646246f99e51a3d93753d19802b12a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image171.jpg?sign=1739521810-4v1b6ZoyZqrcxv6J7w3fPH9kucevHwgD-0-87493f45ea7a3309ba4d2853e70c6e0b)
图2-1 一维方势(V0>0)
(a)方势垒的反射与透射.E<V0
(b)方势垒的反射与透射,E>V0,
(c)方势阱的反射,透射与其振,E>0
(1)E<V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image172.jpg?sign=1739521810-OUH27ES6IdBJ1Qr88xhXL5jGcyX9bQQ1-0-df595a9137da10eb849bbb9d346e671a)
反射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image176.jpg?sign=1739521810-vFcN3jRjSn0Z2X1iusErpk7n6kAnhXKt-0-c049e90aee44586df3a85ab9c501ecca)
(2)E>V0时的情况
透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image177.jpg?sign=1739521810-Nx4sv3zvxEsighRTgEMgCLAMQdzlspQz-0-a9a9fbb23d90ac15bf96621ae9960dc3)
5.方势阱的反射、透射与共振
方势阱对应的透射系数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image179.jpg?sign=1739521810-urY45eb0WGhengeDRXsnqvga356Ms180-0-1726c1819a5c3fc69a8ad7e12cc3059f)
(3)
由式(3)可以看出,如,则一般说来T值很小,除非入射粒子能量E合适,使sink'a=0,此时,T=1(反射系数|R|2=0),这现象称为共振透射.它出现的条件是:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image182.png?sign=1739521810-YdO0Rzn1R0CiqvOi9jtzQbRT27PuX9Z0-0-43e0d9ab1e3961b3cd2b35a86831a9bc)
共振时的能量
(4)
式(4)所确定的E,称为共振(resonance)能级.
三、δ势
1.δ势的穿透
设质量为m的粒子(能量E>0)从左入射,碰到δ势垒(图2-2)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image184.jpg?sign=1739521810-hB5oFRMwWKOZ4uKgrBo9TMT0NeBB0tA3-0-5c1caebe067131c26ddc349cabdd9257)
图2-2
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image185.png?sign=1739521810-ernJ4NqpIbWSYb0c2FoW3F3nIhfiuIjz-0-969ede3624595710c11ff2f008f5e7f9)
(3)式称为δ势中φ'的跃变条件.
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image186.jpg?sign=1739521810-c30KdlCNUFhjDqUWSHkViCRv7oouT7M9-0-04d3b40c6966b7a0e2f05bbc68a27178)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image188.jpg?sign=1739521810-z8ML52RuMGL42mKq5rYqtWvLLPXGLOHS-0-b4410ea0557fa67dff21728af988f3c1)
2.势阱中的束缚态
要求束缚能量本征态(不简并)具有确定字称.以下分别讨论.
(1)偶宇称态
归一化的束缚能量本征态波函数可表示为(取C为实数)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image189.jpg?sign=1739521810-Thdtn2TSD6UrQ9Pl9MjsXM7RRQXao4b7-0-b73a78042260ad1b80825d4e9c52d18f)
(2)奇宇称态
波函数应表示为:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image190.jpg?sign=1739521810-cYhRDAX9SYKlqR3RXydPprthgQYb41rb-0-aa6d589445b73a1ccafd4ca5a25317f6)
3.δ势波函数微商的跃变条件
δ势波函数微商的跃变条件如下:
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image191.jpg?sign=1739521810-YhC5hE8NqxvyRCjyjB6eeHOMouZd5LZX-0-64ed567012e46ca9ee8b8ee036e8353c)
四、一维谐振子
1.一维谐振子本征能量
此即谐振子的能量本征值.可以看出,谐振子的能级是均匀分布的,相邻的两条能级的间距为.
2.一维谐振子本征波函数
一维谐振子波函数常用的关系式如下
其中。