![电路与电子技术基础](https://wfqqreader-1252317822.image.myqcloud.com/cover/479/34667479/b_34667479.jpg)
1.9 电路分析的基本定理
1.9.1 叠加定理
叠加定理(Superposition Theorem):在线性电路中有多个电源共同作用时,电路中任何一条支路的电流(或电压),都等于电路中各个电源单独作用时,在此支路中所产生的电流(或电压)的代数和。叠加定理又称为叠加原理,是电路分析中的一个基本定理,它反映了线性电路的一个基本性质——叠加性。如图1.9.1所示,图1.9.1(a)为原电路,可以视为US单独作用时在该支路中产生的电压(或电流)与IS单独作用时在该支路产生的电压(或电流)的代数和,如图1.9.1(b),图1.9.1(c)所示。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_37_1.jpg?sign=1739586919-fnPn0Cgnd0NoaKFnZYqMKwbHsVcvCh3R-0-d829c1838cf55b4b2a33b867433e5700)
图1.9.1 叠加定理示意图
由图1.9.1(b)可知,当US单独作用时,电流源IS置0相当于开路,求得I1′代数值
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_37_2.jpg?sign=1739586919-U3AqjtflJafbeEO1OI68L5PfZMci7IOl-0-44a41eab2f165babe52414370575e259)
由图1.9.1(c)可知,当IS单独作用时,电压源US置0相当于短路,求得I1′′代数值
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_37_3.jpg?sign=1739586919-m4vtBY0nCgzTyEHNrWJPX2vCV58t7iUi-0-e557040bf2500a1ff82863a974a5d8cc)
根据叠加定理,求得I1的代数和
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_37_4.jpg?sign=1739586919-SJYNNsWhPr8mrxSgwUuamasAWccHde2C-0-b1091ea21f464736aa72182ca76dc76c)
必须指出,叠加定理只适用于线性电路,线性电路的电流或电压均可用叠加定理计算,但功率P不能用叠加定理计算,因为功率不是电压或电流的线性一次函数。
【例 1.9.1】用叠加定理计算图 1.9.2(a)所示电路中的电流I、电压U 及电阻2Ω消耗的功率。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_38_1.jpg?sign=1739586919-XVp5oZpLRR2wE8yDRazMKPFBMtrAD78b-0-03570e0ca436e8ee338f54811b2dc914)
图1.9.2 例1.9.1电路
解:(1)2A电流源单独工作时,5V电压源短路,1A电流源开路,如图1.9.2(b)所示,求得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_38_2.jpg?sign=1739586919-2ZxpRcSoQ7hYJDBGwM5VhwlK41qAIjjy-0-d48b05d7a4be1d9d585ab0f4dc0c87b9)
(2)5V电压源单独工作时,2A电流源和1A电流源开路,如图1.9.2(c)所示,求得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_38_3.jpg?sign=1739586919-G5Rs4OKhdt95FOU6wzXPMqxCoikcPq0Z-0-59c709737bfcd058d7d73cbea9d9df49)
(3)1A电流源单独工作时,5V电压源短路,2A电流源开路,如图1.9.2(d)所示,求得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_38_4.jpg?sign=1739586919-ky6uB2swaM8ETcQovhCM4ywvXvyt2Aa9-0-9f9eb363265cd1130fb7691e734e6f52)
根据叠加定理,原电路图1.9.2(a)的电流和电压分别为
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_38_5.jpg?sign=1739586919-qT0YDPSh1tEnRCTYM1LOncElMPBpJbUQ-0-bb856f03ba69ab6793aba3f13e0f7879)
而2Ω电阻消耗的功率为
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_38_6.jpg?sign=1739586919-9cAOragMlx9znD6R5JBE0zRZXbS10sIb-0-c07307cfebb3795ce6dbb4c9fe1192f5)
注意功率的计算不符合叠加定理,即P2Ω ≠2× I′2+2× I′′2+2× I′′′2。
1.9.2 等效电源定理
有时候,对于一个复杂电路,我们只对其中的某一特定支路的工作状态感兴趣,此时,适于采用等效电源定理来进行分析。
一个有源线性单端口网络,对其外电路来说,总可以用一个等效电源模型来代替,当等效电源模型为实际电压源时,则称为戴维南定理;当等效电源模型为实际电流源时,则称为诺顿定理。
1.戴维南定理
戴维南定理(Thevenin's Theorem):任何一个有源二端线性网络,如图 1.9.3(a)所示,都可以用一个电压源和电阻的串联来等效代替。等效电压源的电压等于有源二端网络的开路电压UOC,串联电阻RO等于有源二端网络中所有电源置零(电压源短路,电流源开路)后所得到的无源二端网络的等效电阻,如图1.9.3(b)虚线框所示。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_39_1.jpg?sign=1739586919-7yyzoL8yYJ8jfCkKmkuxOb72zREkP6Fx-0-6af6a0edf899f13f3cb091b332112da6)
图1.9.3 戴维南定理示意图
【例1.9.2】电路如图1.9.4(a)所示,用戴维南定理求电压U。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_39_2.jpg?sign=1739586919-vADEqNlFg2bg5d0bSPZyXzLe47ON8Mgi-0-f5d258f9979bd83ba7bbfe8f396f403f)
图1.9.4 例1.9.2电路
解:(1) UOC的计算。
应用戴维南定理求解的第一步,是将24Ω电阻断开,如图1.9.4(b)所示,其左边构成一个有源二端网络,开路电压为UOC。由于图 1.9.4(b)中有两个电源,所以利用叠加定理计算UOC。1.5A电流源单独工作时,将24V电压源短路,得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_40_1.jpg?sign=1739586919-36qUHAeFUVc25rRAI662sHEudXHZvlwT-0-9c295dcd26cc04696aad895bb442eeee)
24V电压源单独工作时,将1.5A电流源开路,由分压公式得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_40_2.jpg?sign=1739586919-j5tYvwEpZWpmYZKBtG9qGsXEN60UiOHB-0-4db28818d14ada2588ae2ed30f0017df)
根据叠加定理可得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_40_3.jpg?sign=1739586919-ngc4RqZLJ6LGObUXhSXVxowIXrOeM9dN-0-d03796e9c7c547577494b2416cf9d7a0)
(2) RO的计算。
应用戴维南定理求解的第二步,将图 1.9.4(b)所示有源二端网络中的两个独立电源置零,即电压源短路,电流源开路,如图1.9.4(c)所示,注意24Ω电阻断开。
a、b两端的等效电阻为
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_40_4.jpg?sign=1739586919-GKgOMCRGwuwrVnS9OFrUN4SlEETKsp4X-0-9314dd2bf1e253732bacfef0b15fe8ca)
(3) U 的计算。
应用戴维南定理求解的第三步,将等效电压源和等效内阻串联,再与 24Ω 电阻串联,如图1.9.3(d)所示。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_40_5.jpg?sign=1739586919-IYWIhXGKgaj93d6onwwz5BcZQJksIdEK-0-94001db4bed0853d8dc4c59edd9e3392)
2.诺顿定理
诺顿定理(Norton's Theorem):任何一个有源二端线性网络,如图 1.9.5(a)所示,都可以用一个电流源和电阻的并联来等效代替。等效电流源的电流等于有源二端网络的短路电流ISC,并联电阻等于有源二端网络中所有电源置零(电压源短路,电流源开路)后所得到的无源二端网络的等效电阻RO,如图1.9.5(b)所示。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_40_6.jpg?sign=1739586919-VSHIjEgORuaPU2NRkBKHek64PT4ldk8v-0-af38596a0e8743bfe02eae82b42d7ff6)
图1.9.5 诺顿定理示意图
【例1.9.3】电路如图1.9.6(a)所示,试用诺顿定理求电压U。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_41_1.jpg?sign=1739586919-pUoFLQbliuLjwk1opT9GgzsfKiR1TSFM-0-e3c8383a6255aa6827cf344199bdeeab)
图1.9.6 例1.9.3电路
解:(1)短路电流ISC的计算。
应用诺顿定理求解的第一步,将2Ω电阻支路短路,如图1.9.6(b)所示。利用叠加定理求ISC。
当6V电压源单独工作时,将1A电流源开路,求得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_41_2.jpg?sign=1739586919-MJQyBcuaYedfVCSdMxO6b7VpRPTNGyQf-0-bba4b6811ec9338abbe790dc19bbd800)
当1A电流源单独工作时,将6V电压源短路,求得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_41_3.jpg?sign=1739586919-vWdxvtl5dWxUqLeEQbo56T5r13tExQSM-0-d638fbe6107b02dd5d5fa823ea7156e8)
根据叠加定理
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_41_4.jpg?sign=1739586919-aEpomdtHrV5aIxzj051d8AkdH1nEWHPO-0-f54889accb03b1b5755be5866c926dee)
(2) RO的计算。
应用诺顿定理求解的第二步,将图 1.9.6(b)所示有源二端网络中的两个独立电源置零,即电压源短路,电流源开路,注意2Ω电阻断开。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_41_5.jpg?sign=1739586919-NHi3VetkFqj4GmCXoB7cJcVpZSufIwwI-0-89b63d5e6301b154e9f56aca8a28bcf7)
(3) U的计算。
应用诺顿定理求解的第三步,将等效电流源和等效内阻并联,再与 2Ω 电阻并联,如图1.9.6(c)所示,求得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_41_6.jpg?sign=1739586919-NEZcVl7QJoBqOO8iELQ100JdePtEi5o2-0-23b641d556915517d430eb83d4a8e163)
【例1.9.4】电路如图1.9.7(a)所示,试用诺顿定理求电流I。
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_42_1.jpg?sign=1739586919-j3r7NnNqro7CYohtauxEuelCgs8RhIB7-0-a8c88032fd1a69e3ab7399e43d258e2f)
图1.9.7 例1.9.4电路
解:应用诺顿定理求解的第一步,将2Ω电阻支路短路,如图1.9.7(b)所示。若在图 1.9.7(b)中直接求ISC,比较复杂,可逐段应用诺顿定理求等效电路。这里可以三次采用诺顿定理求短路电流ISC。
将图1.9.7(b)中虚线框利用诺顿定理,求出短路电流和等效电阻
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_42_2.jpg?sign=1739586919-MhaQwTFOKNjXZ02938Uz8ZaEMvnY4tH2-0-d73f333c3ae71347fc579c5b7a20ae10)
这时虚线框的诺顿等效电路如图1.9.7(c)所示,然后对图1.9.7(c)虚线框再次利用诺顿定理,求出短路电流和等效电阻
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_42_3.jpg?sign=1739586919-FQIw3Cyqo68YyQEGscGgthY2kwj4j724-0-03f0cff9dc9f8bfad11180ea3632e401)
这时虚线框的诺顿等效电路如图 1.9.7(d)所示,然后对图 1.9.7(d)虚线框再次利用诺顿定理,求出短路电流和等效电阻
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_42_4.jpg?sign=1739586919-r300L3QWqYnRsnGclxX1lXYmRbvjdv26-0-85523d0b69873c71b3bacea3a57023c8)
应用诺顿定理求解的最后一步,将等效电流源和等效内阻并联,再与 2Ω 电阻并联,如图1.9.6(e)所示,求得
![](https://epubservercos.yuewen.com/CF8D79/18519308401625206/epubprivate/OEBPS/Images/39573_42_5.jpg?sign=1739586919-bp21Q4S20oENJyZTrVFhsBWVqqioWdf0-0-a1e8bbad9155cf61b04c17f21589e538)