![MATLAB金融风险管理师FRM(高阶实战)](https://wfqqreader-1252317822.image.myqcloud.com/cover/187/36862187/b_36862187.jpg)
2.1 切向量和法向量
向量又称作欧几里得向量(Euclidean vector)、空间向量(spatial vector)或者几何向量(geometric vector)。向量通常由大小(magnitude)和方向(direction)两个元素构成。向量大小又叫作欧几里得距离(Euclidean distance)、欧几里得范数(Euclidean norm)或2范数(2-norm),MATLAB对应函数为norm()和vecnorm()。
和起点无关的向量叫作自由向量(free vector),如图2.1(a)所示;和起点有关的向量被称作固定向量(fixed vector),如图2.1(b)所示;方向上沿着某一条特定直线的向量,称之为滑动向量(sliding vector),如图2.1(c)所示。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P56_3712156.jpg?sign=1739310439-cpRObh5vByR0CWlZH7d2CvkL4ibLHx4n-0-6ef68aa3cedbe49db37f960ba9873fbd)
图2.1 自由向量、固定向量和滑动向量
直线的法向量(normal vector)为垂直于该直线的非零向量,如图2.2(a)所示。光滑曲线上某点的法向量垂直于曲线上该点处的切线,如图2.2(b)所示。平面法向量(a normal line to a surface)垂直于平面内任意直线,如图2.2(c)所示。光滑连续曲面内某点的法向量为曲面该点处切平面(tangent plane)的法向量,如图2.2(d)所示。
本章用n来表达法向量,而单位法向量(unit nor mal vector)N通过下式获得:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P56_3712157.jpg?sign=1739310439-pJzVfDJmnap4BckJ3MTip81yB02dj1Wi-0-ff2325e31d329a5dc08197436a53195e)
单位法向量N模为1。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P57_3712158.jpg?sign=1739310439-2ipaq2KQJ95QPFTbbMNs6qcrnsWPTdr3-0-9dfe732d59a71458a446df92ee672f79)
图2.2 直线、平面和光滑曲面法向量
直线上任意一点的切向量(tangent vector)是和直线相切的非零向量,如图2.3(a)所示。直线某点处切向量和法向量垂直,即两者内积为0。图2.3(b)所示为光滑曲线的切线。三维空间平面上某点的切线有无数条,如图2.3(c)所示。同样,如图2.3(d)所示,光滑曲面上某点的切线有无数条,且都在曲面该点的切平面内。本书一般用τ来表达切向量。单位切向量(unit tangent vector)T通过下式获得:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P57_3712159.jpg?sign=1739310439-QmZzJhPdl8uPc329PZ85XIGgNpciDy1q-0-8194e5175fa6601b53684af2c8b4f767)
单位切向量T模为1。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P57_3712160.jpg?sign=1739310439-RV0TnSNzH8BMfGxdOypIMafzatcsMxlN-0-5bf17c6f05136484d1c2f2d627416aa0)
图2.3 直线、平面和光滑曲面切向量
向量外积,也叫叉乘(cross product)或向量积(vector product)。向量内积(inner product)或标量积(scalar product)为标量,而向量叉乘结果为向量。a和b的向量积,记作a × b。a × b方向分别垂直于向量a和b,即a × b垂直于向量a和b构成的平面。向量a和b以及a × b构成右手法则,如图2.4所示,同时在图中可以看到a × b和b × a方向相反。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P58_3712162.jpg?sign=1739310439-mULpAQ9PaKFo6YiUMnYHupifpDRH6eQH-0-ca5538f133dcd1f8f02494a3aa314c67)
图2.4 向量叉乘右手法则
a × b的模通过下式获得:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P58_3712167.jpg?sign=1739310439-7zqYAuwZThUZBXNnR9o1Wx3da02GCCvn-0-fbc3bba65de38e78992904ddf09158e5)
其中,θ为向量a和b的夹角。
如图2.5(a)所示,空间直角坐标系中三个正交基底向量i(x轴正方向)、j(y轴正方向)和k(z轴正方向)之间满足向量叉乘关系,如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P58_3712165.jpg?sign=1739310439-3hLrN5l6jWphEDAiqltHvVA6laBczwe1-0-93551f0d724b659a9aac1aa9db4c2b50)
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P58_3712166.jpg?sign=1739310439-bTnFCkC5zCpKZSA5ZH3JfSy5EGMWyJAa-0-8c3f4dfdd7dcff08c0a6e419f60be3e3)
图2.5 三维空间正交单位向量基底之间关系
图2.5(b)展示了以上三个等式中i、j和k的前后顺序关系。若调换它们的顺序,会得到以下三个运算式:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P58_3712169.jpg?sign=1739310439-Uo73hHd4p0pNoLxEYjkbxPHPrQUWyFQI-0-02368fb5adc5ed32f16c2d883d6eb627)
向量与自身叉乘等于0向量,如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P58_3712171.jpg?sign=1739310439-t2OFlsNQ3ofVjEmmwwtJ9LHraHpwk6DA-0-e3310262d5a09424e715f556bc47fe45)
叉乘运算的常见性质如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P59_3712172.jpg?sign=1739310439-sgfKQZjCTaXLYvnwfNR6AQCxzb64tZ5u-0-ef6e1c0209227bc10b7fd25e4a946461)
若用基底向量i、j和k表达向量a和b:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P59_3712173.jpg?sign=1739310439-XhDMmZIqZO6sorN3wxq7R0J3DMauEw0p-0-6d68d59e3aef6de0dc678e1d97b84656)
整理向量a和b的叉乘,如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P59_3712175.jpg?sign=1739310439-wCdhEjxbNtKwhmrAaYRoCKHr7yV5hHKP-0-184cabbbeb23fa8f75656d07dd426256)
则结果为以下行列式值:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P59_3712176.jpg?sign=1739310439-Kpm3Hy9kKUg5Tblf9mlhllSq4mRPLt2w-0-53dd19271457c9a5be28fa5aa71120ab)
下面结合代码计算两个向量的叉乘:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P59_3712177.jpg?sign=1739310439-bLYU447t5VNtqgGj7HerHd6zxjD2EDQE-0-6e9df6108158114ac28fc3dfba37f620)
a × b结果如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P59_3712178.jpg?sign=1739310439-ayK1utcyXtlvXW2b0cNyfv9TatohpOVI-0-32b4f63fb554b6fe9bca32a6c91642db)
b × a结果如下:
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P59_3712179.jpg?sign=1739310439-9ogEUMwgkliFA5QLQhvScgOnBPj0ESfM-0-f74b3cf226199cbd24dfd257066947c1)
MATLAB计算叉乘函数为cross(),图2.6展示cross()计算叉乘a × b和b × a,并用quiver3() 绘制结果。此外,图2.6用fill3()函数绘制a和b构造平面。
![](https://epubservercos.yuewen.com/745BB7/19549640201517806/epubprivate/OEBPS/Images/Figure-P60_3712180.jpg?sign=1739310439-TXyLo7v6LFB7jTxTynzswH3VVlzPn7qQ-0-e07f8f1d145c732164bc2eadc5b6b85b)
图2.6 向量a和b叉乘
以下代码获得图2.6。
B4_Ch1_1.m clear all; close all; clc O = [0, 0, 0]; A = [-2,1,1]; B = [1,-2,-1]; AO = A-O; BO = B-O; cross_prod1 = cross(AO,BO) cross_prod2 = cross(BO,AO) figure( 1) points=[ A' B' O']; h5 = fill3(points(1,:),points(2,:),points(3,:),'b'); h5.EdgeColor = [1 1 1]; h5.FaceAlpha = 0.4; hold on h1 = quiver3(O(1),O(2),O(3),AO(1),AO(2),AO(3)); h2 = quiver3(O(1),O(2),O(3),BO(1),BO(2),BO(3)); h1.AutoScale = 'off'; h2.AutoScale = 'off'; h1.LineWidth = 1; h2.LineWidth = 1; h3 = quiver3(O(1),O(2),O(3),cr oss_prod1(1),cross_prod1(2),cross_prod1(3)); hold on h4 = quiver3(O(1),O(2),O(3),cross_prod2(1),cross_prod2(2),cross_prod2(3)); h3.AutoScale = 'off'; h4.AutoScale = 'off'; h3.LineWidth = 1; h4.LineWidth = 1; daspect([1,1,1]); box on; grid off; view(-45,45) xlabel('x'); ylabel('y'); zlabel('z') hAxis = gca; hAxis.XRuler.FirstCrossoverValue = 0; % X crossover with Y axis hAxis.YRuler.FirstCrossoverValue = 0; % Y crossover with X axis hAxis.ZRuler.FirstCrossoverValue = 0; % Z crossover with X axis hAxis.ZRuler.SecondCrossoverValue = 0; % Z crossover with Y axis hAxis.XRuler.SecondCrossoverValue = 0; % X crossover with Z axis hAxis.YRuler.SecondCrossoverValue = 0; % Y crossover with Z axis