![多传感器数据智能融合理论与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/842/41309842/b_41309842.jpg)
2.3 多传感器数据融合中的卡尔曼滤波理论
2.3.1 卡尔曼滤波简介
针对传感器信息的跟踪滤波算法,大多数工程技术人员会选用卡尔曼滤波算法。卡尔曼滤波算法是R.E.Kalman在1960年发表的一篇著名论文中所阐述的一种递归解算法。该算法在解决离散数据的线性滤波问题方面有着广泛的应用,特别是随着计算机技术的发展,给卡尔曼滤波提供了广泛的研究空间。卡尔曼滤波器是由一组数学方程所构成,它以最小化均方根的方式,来获得系统的状态估计值。滤波器可以依据过去状态变量的数值,对当前的状态值进行滤波估计,对未来值进行预测估计。
一个离散的线性状态方程和观测方程如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_01.jpg?sign=1739280106-8EDyqnwfBkhrdO4DI28tTYeas5WgUoxZ-0-bafa049ca6c9aefd0f42b650c4699ee6)
其中,X(k)为状态向量,Y(k)为观测向量;W(k)为状态噪声,或称为系统噪声;V(k)为观测噪声。假定W(k)和V(k)为互不相关的白噪声序列,分别符合N(0,Q)和N(0,R)的正态分布。
系统噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_02.jpg?sign=1739280106-nriwKEBOSTtqFMYe65iB6ZWfaTe1Cwsk-0-fed58fc01a97b88df8fcb2e65bc82a4a)
观测噪声的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_03.jpg?sign=1739280106-MPhkJKLVB1kNoZV3k4DXFXXmXSeWAUYz-0-3b77df608711d10e16afcdbd142755a7)
卡尔曼滤波器就是在已知观测序列{Y(0),Y(1),…,Y(k)}的前提条件下,要求解X(k)的估计值,使得后验误差估计的协方差矩阵P(k/k)最小。其中
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_04.jpg?sign=1739280106-v5JvmbR7aFZu3VCQR6TKOPMKZyjy8lgh-0-44204803f339c72abb7028f5750f048f)
在式(2.5)中,e(k/k)为后验误差估计,它可以由下式求得:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_05.jpg?sign=1739280106-aKgUDfc2HnRnTH8LN2XSH08ukBWsFl6a-0-8249d8546c7ffd0708cdf067c7dce544)
定义先验误差估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_06.jpg?sign=1739280106-dyWnZ88IOdfYJpcLITWccGXZMezvq3hj-0-25ee5b110d1db47b3d4f7f4767209911)
可以得到先验误差估计的协方差矩阵为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_07.jpg?sign=1739280106-xjB7hojAYRGJNghpc4eE1QJGyPG8UrCh-0-b4c021a06bc1556aee7eef917ca2354a)
假定卡尔曼滤波的后验估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_08.jpg?sign=1739280106-WomOzWdAlL3R5fDrwu3nJtghpgoBaOmW-0-672ec2e54dfae938df00a21dcb0602b1)
将式(2.9)代入到式(2.6)中,得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_09.jpg?sign=1739280106-QSe0QFhDYQpJAK7ZgrYDyO2lEzU3y2lj-0-2447c42cb48646c52b7f07a50f45709b)
将式(2.10)代入到式(2.5),可得
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/19_10.jpg?sign=1739280106-VkNeNaEllRSi82qKfwJqw14dXm4rB0DG-0-4efe395b8d63cbd33be4aa83d6331569)
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_01.jpg?sign=1739280106-9uK4aA6rGsmPyMACYQRh7MKadqskQTOj-0-a2c373ccdb29dce25131474912e4cc1e)
假设:随机信号W(k)与V(k)与已知的观测序列{Y(0),Y(1),…,Y(k)}是正交的,则有E[W(k-1)Y(k-1)]=0,E[V(k-1)Y(k-1)]=0。
式(2.11)可以化简为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_02.jpg?sign=1739280106-Z0h817Myq2FkLRMQPZxRtNC39J04aWNJ-0-95d2eb287466422ae72d0f9874802c21)
对式(2.12)求导,并令其为零,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_03.jpg?sign=1739280106-rhZ2H985VEDaDMwSaYAdbdodY4euClrU-0-fada4e41ea97c9bba026c2c79cc6f8d1)
同理,可得到
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_04.jpg?sign=1739280106-IrFtPw9ZfXMkOK7cpqNrSGSGVEZ0dRXR-0-1576d3530478ad1ead682b35860095b4)
因此,可以得到状态估计如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_05.jpg?sign=1739280106-K2KUGqyi9KSc7Za9g8Ha8X2YxwTMclWc-0-185f8e48bc9da82846c9fbd56d964c4a)
状态预测估计为
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_06.jpg?sign=1739280106-K2PwjtcSSHjONp1z8yaUyI6OLr4CQ8a3-0-2002d044990174ffb7fd8dac8e6ba849)
进一步计算得出误差的协方差矩阵如下式所示:
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_07.jpg?sign=1739280106-uZeoupyYiGJZ3LoBiAdnxPe4nEMes75v-0-348d9ee09041732bb10c47794b8fe701)
由此可以获得卡尔曼滤波的递推公式如图2.7所示。
![](https://epubservercos.yuewen.com/659A0E/21511156701516006/epubprivate/OEBPS/Images/20_08.jpg?sign=1739280106-sucbYHb5X1zsH3ragXK6UU9NZAUvcNGy-0-0094ecd57f7b31082713a6e71cfa6dea)
图2.7 卡尔曼滤波的递推公式