![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第七届全国大学生数学竞赛预赛(2015年非数学类)
试题
一、计算下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1738851444-VJlzJMrhIwhePtfVzwEHJ8q3tGPftyMF-0-0e5ac081f29c94fe4a00931382385cee)
(2)设函数z=z(x,y)由方程所决定,其中F(u,v)具有连续的偏导数,且xFu+yFv≠0,则
.(本小题结果要求不显含F及其偏导数)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面与曲面z=x2+y2所围区域的体积为________.
(4)函数在(-5,5]内的傅里叶级数在x=0收敛的值为________.
(5)设区间(0,+∞)上的函数u(x)定义为,则u(x)的初等函数表达式为________.
二、(12分)设M是以三个正半轴为母线的半圆锥面,求其方程.
三、(12分)设f(x)在(a,b)内二次可导,且存在常数α,β使得对于∀x∈(a,b),f′(x)=αf(x)+βf″(x),证明f(x)在(a,b)内无穷次可导.
四、(14分)求幂级数的收敛域与和函数.
五、(16分)设函数f在[0,1]上连续,且.试证:
(1)∃x0∈[0,1],使得|f(x0)|>4;(2)∃x1∈[0,1],使得|f(x1)|=4.
六、(16分)设f(x,y)在x2+y2≤1上有连续的二阶偏导数,.若f(0,0)=0,fx(0,0)=fy(0,0)=0,证明
.
参考答案
一、解 (1)由于,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1738851444-xpTngZa4hzAF6PlRLI1tFKOPfsYGr7zF-0-51df2b0ddd16381528d3e546ff2c3565)
由夹逼准则,可得.
(2)方程两端关于x求偏导数,可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0003.jpg?sign=1738851444-Rlj3CcXN1sSd0IgyjbDjeDziGWJeCZJS-0-84d53083fd1a5326a43d697c4cd9a5d8)
类似地,对y求偏导数可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0004.jpg?sign=1738851444-eh9ifmqVAZPI1oEIBGs5jxXgiqwypEno-0-30af37815a61b189a1e5976c14dc3b8f)
于是,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0005.jpg?sign=1738851444-mTwOuYBB3lkgRsoKVFcCutOsyVdbbCuw-0-1f60885a417b776d70eaa0cb2e420891)
(3)曲面z=x2+y2+1在点M(1,-1,3)的切平面为
2(x-1)-2(y+1)-(z-3)=0,即z=2x-2y-1.
联立得所围区域在xOy面上的投影D为
D={(x,y)|(x-1)2+(y+1)2≤1}.
所求体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0007.jpg?sign=1738851444-Bl16q8Q8RSdWJKes12p0YzoYadf3CQAf-0-acfacc846682a07c69d412c1a325862b)
令x-1=rcost,y+1=rsint,则dσ=rdtdr,D:所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0009.jpg?sign=1738851444-iU1JztKMQYPoqeE3d2m5NQZSREaoNYLn-0-cf5917446b494009391008897bdaa21e)
(4)由狄利克雷收敛定理,得.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0011.jpg?sign=1738851444-cc8d5ReVoIoxrJoKRZcqfICCDWkW31JK-0-b766edd07b13fadbd7f1439a23a7349c)
所以.
二、解 显然O(0,0,0)为M的顶点,A(1,0,0),B(0,1,0),C(0,0,1)在M上.由A、B、C三点决定的平面x+y+z=1与球面x2+y2+z2=1的交线L是M的准线.
设P(x,y,z)是M上的点,(u,v,w)是M的母线OP与L的交点,则OP的方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0013.jpg?sign=1738851444-DZaFjOq3ium3C3YC95U0uiPntO38oZPe-0-ddd48a8a680d839281e651b8e8b24b96)
代入准线方程,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0040_0014.jpg?sign=1738851444-Wq5wRTOOrbQ0dUls5eyfSvhxW3cc4wWA-0-27ff014d28270db4b8bd86c37e508c62)
消去t,得圆锥面M的方程为xy+yz+zx=0.
三、证明 (1)若β=0,则∀x∈(a,b),有
f′(x)=αf(x),f″(x)=α2f(x),…,f(n)(x)=αnf(x),…,
从而f(x)在(a,b)内无穷次可导.
(2)若β≠0,则∀x∈(a,b),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0001.jpg?sign=1738851444-Kwzq6TiDYRLUaBjclLuCsfe5OUuzDXuv-0-99d3ea126de8a117fda467fb01aaec08)
(1)
其中.
因为(1)式右端可导,从而有
f‴(x)=A1f″(x)+B1f′(x).
设f(n)(x)=A1f(n-1)(x)+B1f(n-2)(x),n>1,则
f(n+1)(x)=A1f(n)(x)+B1f(n-1)(x).
所以,f(x)在(a,b)内无穷次可导.
四、解 因,所以收敛半径R=+∞,收敛域为(-∞,+∞).由
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0004.jpg?sign=1738851444-nw9UEA26nqy5iG0fAP23gJuKvK9GETyg-0-a62f0d438a7d74e241a76a6a8032e2c2)
及幂级数的收敛域都为(-∞,+∞),得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0006.jpg?sign=1738851444-e4HrS5kqyE6Rqi3SHEXvoiZsuN5OsBPl-0-25ca6278dcc9afe405f368b18fcd5524)
用S1(x),S2(x),S3(x)分别表示上式右端三个幂级数的和,依据ex的幂级数展开式可得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0007.jpg?sign=1738851444-7TQYgrgewdfUCi5S2xDLeL9TK9Wzg6WA-0-ead6c7860d339deb31cdb7ecfc7dd3c5)
综合上述讨论,可得幂级数的和函数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0008.jpg?sign=1738851444-FJCmAvb2iSsk9Yg9dUThz57LkJvQyZJY-0-3b8c2793eb831ebb20b7f0098d9cd44c)
五、证明 (1)反证法.若∀x∈[0,1],|f(x)|≤4,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0009.jpg?sign=1738851444-Zwpgoq9BQcg7OTJCJi4KxWjNVWzldv4H-0-c5325640a720d82a00e5e929db1f3f72)
因此,.而
,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0041_0012.jpg?sign=1738851444-RN89bgKWdDYVJlLOkVgdWx70JiNe8mk4-0-55966b05f61056b8d7b9cb251e549134)
所以对于任意的x∈[0,1],|f(x)|=4.又由f(x)的连续性知,
f(x)≡4 或 f(x)≡-4.
这与条件矛盾.所以∃x0∈[0,1],使得
|f(x0)|>4.
(2)先证∃x2∈[0,1]使得|f(x2)|<4.若不然,∀x∈[0,1],|f(x)|≥4,则f(x)≥4或f(x)≤-4恒成立,这与矛盾.
再由f(x)的连续性及(1)的结果,利用介值定理,可得∃x1∈[0,1]使得|f(x1)|=4.
六、证明 在(0,0)处展开f(x,y)得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0001.jpg?sign=1738851444-GNWHYdtEuWDnvBgsIutNIRcI4Pys7p2G-0-1eab0f2cfa04b063db3779d38a7acb57)
记,则
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0003.jpg?sign=1738851444-BrEmuioEMGhB9OinrfPUhBWW2UAgHUrk-0-c69542c69002e60af633684bd50fa332)
由于以及
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0005.jpg?sign=1738851444-7nxU7ZKmI92uukZYrMkLl2Al794N8QAm-0-1d4891cebc32ace0eb56100b3630a4b6)
于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0006.jpg?sign=1738851444-MRANQPrfhxnvF5ARqp9lx9qIqxg8DDxc-0-0ca1ca61d29a380d4619fecf69676446)
即,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0042_0008.jpg?sign=1738851444-tdgm4hHnGGRB13n5DspD6K0cw0SVuKt3-0-f76893270a623d91191eeef904bed958)