![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第八届全国大学生数学竞赛预赛(2016年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)若f(x)在点x=a处可导,且f(a)≠0,则.
(2)若f(1)=0,f′(1)存在,求极限.
(3)若f(x)有连续导数,且f(1)=2,记z=f(exy2),若,求f(x)在x>0的表达式.
(4)设f(x)=exsin2x,求f(4)(0).
(5)求曲面平行于平面2x+2y-z=0的切平面方程.
二、(14分)设f(x)在[0,1]上可导,f(0)=0,且当x∈(0,1)时,0<f′(x)<1.试证:当a∈(0,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0005.jpg?sign=1739285611-26tvWYN3GeX8LRi858mmfFb6cmr4TwRH-0-7d6bb60a314e54893a3bf4c1fa5ae943)
三、(14分)某物体所在的空间区域为
Ω:x2+y2+2z2≤x+y+2z.
密度函数为x2+y2+z2,求质量
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0006.jpg?sign=1739285611-ZkFR1vKNG452kS6Td2n2HqCvktbDvyzI-0-fa6dce07b88b9741ecd2545db8655a94)
四、(14分)设函数f(x)在闭区间[0,1]上具有连续导数,f(0)=0,f(1)=1,证明:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0007.jpg?sign=1739285611-daDbSiu6ftfysORYFvjzUj4EkR0lucl0-0-3405bfc1c02cbbce790ea7268c5b1fe3)
五、(14分)设函数f(x)在区间[0,1]上连续,且.证明:在(0,1)内存在不同的两点x1,x2,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0009.jpg?sign=1739285611-UIkxbHDAHpCoHCSvr3X1nBNXB3YATuvE-0-cd788fdb001399f83cff2253f1ce672b)
六、(14分)设f(x)在(-∞,+∞)上可导,且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0010.jpg?sign=1739285611-zYaoHxjOKHMT4RF2AhNqbiWLTgyrJn89-0-c56d233c845e0a69134239206045104b)
用傅里叶级数理论证明f(x)为常数.
参考答案
一、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0001.jpg?sign=1739285611-Ujwp2bzSauDKf0Bbr9JIStYfiz9gPr82-0-b9eb9b6fcf122264c2455d0f0a0e1e1d)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0002.jpg?sign=1739285611-2FXst6CdLV4IaX45lpYSVk3uxx7tXFZH-0-294848c5d7fc03d557098280c1546ff1)
(3)由题设,得.令exy2=u,则当u>0时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0004.jpg?sign=1739285611-Q4zAImmNUGqemNHg3yl53uR6ddRbbsvW-0-af03996c29bbf48c1fd3701247b79571)
积分得lnf(u)=lnu+C1,即f(u)=Cu.
又由初值条件得f(u)=2u.所以,当x>0时,f(x)=2x.
(4)将ex和sin2x展开为带有佩亚诺型余项的麦克劳林公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0005.jpg?sign=1739285611-kbyDP0AxqQtROyJDm03mLtOmHzN5YbhE-0-5f622929abdcf3611edbcda31a9988f5)
所以有,即f(4)(0)=-24.
(5)曲面在(x0,y0,z0)的切平面的法向量为(x0,2y0,-1).又切平面与已知平面平行,从而两平面的法向量平行,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0007.jpg?sign=1739285611-sxWFfnfnIGZJ8lMrvmsUfdoeIEAkLqv7-0-5828f9bdb4fd6d9c2c2639ce8ffb4311)
从而x0=2,y0=1,得z0=3,所以切平面方程为
2(x-2)+2(y-1)-(z-3)=0,即2x+2y-z=3.
二、证明 设,则F(0)=0,下证F′(x)>0.
再设,则F′(x)=f(x)g(x),由于f′(x)>0,f(0)=0,故f(x)>0.从而只要证明g(x)>0(x>0).而g(0)=0.因此只要证明g′(x)>0(0<x<a).而
g′(x)=2f(x)[1-f′(x)]>0.
所以g(x)>0,F′(x)>0,F(x)单调增加,F(a)>F(0),即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0001.jpg?sign=1739285611-gAfXIOXMgBlNSm5TC1DP9dJ0FF99uYOF-0-39e659e3f0c2484d374c14b318fdd1c6)
三、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0002.jpg?sign=1739285611-bgP7BiMTsftYvGEqwS58sxJVlEbdyP2w-0-39067590e6c96a89e1374cd787757c8a)
是一个各轴长分别为1,1,的椭球,它的体积为
.
做变换,将区域变成单位球Ω′:u2+v2+w2≤1,而
,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0008.jpg?sign=1739285611-J8Op65cNY2wUJ218Cr4SdORi3HUWnfZN-0-8a680473fee5d4048dac2eb667c0a16f)
而 .所以
.
四、证明 将区间[0,1]分成n等份,设分点为,则
.且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0013.jpg?sign=1739285611-LdF2CiSjz6eDqSPuWdhNNQZSoniFRvd7-0-cd182a3334ca277ee595eba709d89de1)
五、证明 设,则F(0)=0,F(1)=1.由介值定理,存在ξ∈(0,1),使得
.在区间[0,ξ],[ξ,1]上分别应用拉格朗日中值定理,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0016.jpg?sign=1739285611-fhFEAhGrym1AmqldqXAZ8FKkKHwXedY7-0-22de1ff935f011bcf4c2ee2c99e7c6d1)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0001.jpg?sign=1739285611-dfIFZnCcoVXu3nszxxuYcAHzHMtFMqlC-0-011e485263239e023492af0739299939)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0002.jpg?sign=1739285611-6yyIH2GEgmWA537WFWmNOyNQbHLszf6B-0-097d1e94b4aad2f0eed6dded0bc7087e)
六、证明 由可知,f是以2,
为周期的周期函数,所以,它的傅里叶系数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0005.jpg?sign=1739285611-UdwOWiPSo4JVPBu4LGHxiHhVxnt1kE5y-0-fa814921a726e8177a451fb0cd956046)
由于,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0007.jpg?sign=1739285611-2IOGht2tgQPJTuSQFPSPiPyO7X1v5ScC-0-95bb6c78eb21aeb2236de8d784e1e7a0)
故有;同理可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0009.jpg?sign=1739285611-Ac60tIpPNEYTUPOpQRM4ws6ywbHJTdFN-0-ebe424e68bea6601d0c1291cb4b7f87e)
联立,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0010.jpg?sign=1739285611-YQjWPyW5NO5TUwpwwnMFDFDrjESTWLHL-0-0936e5c3d2f6fb77dd0bb58a7a098b1a)
解得an=bn=0(n=1,2,…).
而f(x)可导,其傅里叶级数处处收敛于f(x),所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0011.jpg?sign=1739285611-uaYRe4ZUcICWexPL5JNgX3Qr2zWwOrzU-0-d94a709cd53a63587c57337709d67987)
其中为常数.