![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第1部分
八届预赛试题及参考答案
首届全国大学生数学竞赛预赛(2009年非数学类)
试题
一、填空题(本题共4个小题,每题5分,共20分)
(1)计算,其中区域D是由直线x+y=1与两坐标轴所围三角形区域.
(2)设f(x)是连续函数,且满足,则f(x)=________.
(3)曲面平行平面2x+2y-z=0的切平面方程是________.
(4)设函数y=y(x)由方程xef(y)=eyln29确定,其中f具有二阶导数,且f′≠1,则.
二、(5分)求极限,其中n是给定的正整数.
三、(15分)设函数f(x)连续,,且
,A为常数,求g′(x)并讨论g′(x)在x=0处的连续性.
四、(15分)已知平面区域D={(x,y)|0≤x≤π,0≤y≤π},L为D的正向边界,试证:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0008.jpg?sign=1739286099-tpfcPuRURdQ7PQw4OlX695Qi10TcclJf-0-4b4baea3e5df6b25a6106c29b8c2b67b)
五、(10分)已知
y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x
是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.
六、(10分)设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
七、(15分)已知un(x)满足
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0013_0010.jpg?sign=1739286099-DCRSyDfnpOGSqgNo4wZUbPiD7ZHrNqpS-0-f7f8501084c98478ab86ff4c195069d1)
且,求函数项级数
之和.
八、(10分)求x→1-时,与等价的无穷大量.
参考答案
一、(1).(2)
.(3)2x+2y-z-5=0.(4)
.
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0004.jpg?sign=1739286099-wa5QIQ49CpVQOvVsxeE4bztPxZ3VkZ91-0-2a23bc01a42be984b71e1b8a09f07a22)
其中大括号内的极限是型未定式,由洛必达法则,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0006.jpg?sign=1739286099-8B06JvUHdRwjAmjSN0s47WSh97ekW455-0-1e771e980edf1af9782d68a11a39e32e)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0007.jpg?sign=1739286099-DRGQfNd2aV27Ed248j6PzMfowjD1M737-0-40d40cd6c9b0bbf340cffc71ce17a25c)
三、解 由题设,知f(0)=0,g(0)=0.令u=xt,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0008.jpg?sign=1739286099-rdd39UTPDVBeq6p3WAwxLRuXwwIHsC2p-0-5e9c948821025c0baf47e8571179b1b4)
而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0009.jpg?sign=1739286099-502OTfa0N3Y4yDRLiTZhHEQWMeL3AN7V-0-a74ffa5425eac13386718de0e4e2f726)
由导数的定义有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0010.jpg?sign=1739286099-w0huIvlTtoOMmr6VjogQrfqW2B9AeB7b-0-e612712cc3f1b61e7c1f3c887a2d787d)
另外
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0011.jpg?sign=1739286099-FhWXIPy3DhQ8vJzDylCKGH2M91wVmX1Y-0-4a28b4973d62b1607fa220a07beddd21)
从而知g′(x)在x=0处连续.
四、证法1 由于区域D为一正方形,可以直接用对坐标曲线积分的计算法计算.
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0012.jpg?sign=1739286099-k3Fw7gHtcD1B6pZv23myAkoutF2zlErn-0-4636ff734e912160f6b73c679ecdf1ed)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0013.jpg?sign=1739286099-UbeNHfIFzLCpguOo1dzoJX97okpWzGlf-0-29bff20a462f4b6110d2b797994bafe1)
(2)由泰勒公式得esinx+e-sinx≥2+sin2x,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0014.jpg?sign=1739286099-YJLl0igPj0CTzRTbAb9SjuS2CcMnJBcW-0-915b251c6171ad9376f5421471f08049)
证法2 (1)根据格林公式,将曲线积分化为区域D上的二重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0014_0015.jpg?sign=1739286099-W4LduGtlpeFsM0EQubEIhqPGlUKhTq1C-0-08d5b5b6491f79dcf0415d6677ab03b7)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0001.jpg?sign=1739286099-SjVt2VzLRfBNraSq7XVC4dipDWkl2IIv-0-151fb4e64fee1190aee2958dc6aca3fc)
因为关于y=x对称,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0002.jpg?sign=1739286099-pBmsdqtzqi2XnWMPtZadWdR0CZDdDqjh-0-8e21ac9ec6d09f66ab4c1593414804be)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0003.jpg?sign=1739286099-UKuq2icL604TAlqwwxzQxHHLxdJ4CbRI-0-0f8710f5300265058e88ab776537f605)
(2)由,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0005.jpg?sign=1739286099-2PIoBhQu7tsJUbSQlxdGwP8APiDMGKs9-0-f4e6e3c00067b48fa46d8d2d96171372)
五、解 根据二阶线性非齐次微分方程解的结构的有关知识,由题设可知2y1-y2-y3=e2x与y1-y3=e-x是相应齐次方程两个线性无关的解,且xex是非齐次方程的一个特解,因此可以用下述两种解法.
解法1 设此方程式为
y″-y′-2y=f(x).
将y=xex代入上式,得
f(x)=(xex)″-(xex)′-2xex=2ex+xex-ex-xex-2xex=ex-2xex,
因此所求方程为y″-y′-2y=ex-2xex.
解法2 设y=xex+c1e2x+c2e-x是所求方程的通解,由
y′=ex+xex+2c1e2x-c2e-x,y″=2ex+xex+4c1e2x+c2e-x,
消去c1,c2得所求方程为y″-y′-2y=ex-2xex.
六、解 因抛物线过原点,故c=1.由题设有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0006.jpg?sign=1739286099-c0tRh79rKcnhxPBp0VpZMpFsGra9Glmj-0-3c4eaefc79ae24206e849a9a9a73d355)
即,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0008.jpg?sign=1739286099-r5wf3z1ULyRLde3zeqgRB7HLrbTMPOeP-0-04eb1138ae0d3a0661aa094e57f4a76b)
令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0009.jpg?sign=1739286099-IqNPO2vhNdBzCrubHbTT1BA198vZ3RyS-0-7ef539597d2a0e25ef948e05ce73decb)
得,代入b的表达式得
,所以y≥0.
又因及实际情况,当
,
,c=1时,体积最小.
七、解 先解一阶常系数微分方程,求出un(x)的表达式,然后再求的和.
由已知条件可知是关于un(x)的一个一阶常系数线性微分方程,故其通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0017.jpg?sign=1739286099-xjST6J1d21wRSrYhVw8qNgxKRyWGOTHD-0-d6ae88f706c96508a2012078909c57f2)
由条件,得c=0,故
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0015_0020.jpg?sign=1739286099-pxSh8NhGgTT84Z4MEHmVGK7vlOmcO7zw-0-ef4723d837a1be40229b4f9cde118395)
,其收敛域为[-1,1),当x∈(-1,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0002.jpg?sign=1739286099-s3Mebr7RbLmYaC6AALHSWGhtMtW7zCdu-0-73a5deb752adb915d77f1b867c4721ea)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0003.jpg?sign=1739286099-hANogQPWhhT1sGtTNKUdRPXbGHO3fKg5-0-748cb14fcb37ee297a6a050e3a6367a6)
当x=-1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0004.jpg?sign=1739286099-yRDwfXH18vecwMAOZUMthVMIytA76qax-0-1ea9478f5f97b892a2f047ff7f487a0f)
于是,当-1≤x<1时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0005.jpg?sign=1739286099-YpZx7lGvA1UClQFp1WtZ7dqGziBxNYBR-0-b9bbafbb3d6f995a7f472e0548ab6405)
八、解 ,故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0016_0007.jpg?sign=1739286099-9nB7206mYabpWtJL2jXqMLpmjKF2Zhlm-0-4e5298f258b0987646b642e686ed32df)