![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第三届全国大学生数学竞赛预赛(2011年非数学类)
试题
一、计算下列各题(本题共4个小题,每题6分,共24分)(要求写出重要步骤)
(1).
(2)设,求
.
(3)求,其中D={(x,y)|0≤x≤2,0≤y≤2}.
(4)求幂级数的和函数,并求级数
的和.
二、(本题两问,每问8分,共16分)设为数列,a,λ为有限数,求证:
(1)如果,则
.
(2)如果存在正整数p,使得,则
.
三、(15分)设函数f(x)在闭区间[-1,1]上具有连续的三阶导数,且f(-1)=0,f(1)=1,f′(0)=0.求证:在开区间(-1,1)内至少存在一点x0,使得f‴(x0)=3.
四、(15分)在平面上,有一条从点(a,0)向右的射线,其线密度为ρ.在点(0,h)处(其中h>0)有一质量为m的质点.求射线对该质点的引力.
五、(15分)设z=z(x,y)是由方程确定的隐函数,且具有连续的二阶偏导数.求证:
和
.
六、(15分)设函数f(x)连续,a,b,c为常数,Σ是单位球面x2+y2+z2=1.记第一型曲面积分.求证:
.
参考答案
一、(1)解 因为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0022_0017.jpg?sign=1739286824-mrb4XZCH3PEjyqYdHYwsKAgI10PvqHpU-0-6ffade3594b785ac99c066ae859ce58b)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1739286824-eQAzGIqcmDUDP3HOjow20K39Mqr3FBU8-0-d0d247eb96b722792323eb20174db42b)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1739286824-oLq27EYXOdYSJbmRlXUIaOSgrtGErjZw-0-7172935cb1bba64f29f34fb5ce351418)
(2)解 若θ=0,则.
若θ≠0,则当n充分大,使得2n>|k|时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0004.jpg?sign=1739286824-wj53J5o80auPAJ8435kLk8CFkGLjVBjV-0-699f47840f36d451b9aa8d477bc2f2d1)
这时,.
(3)解 设
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0006.jpg?sign=1739286824-vjem2DF95qZD9fwLMgP24rLFdzVSAK3F-0-977b43c24bc06854040ee062bb98c0db)
(4)解 令,则其定义区间为(
,
).∀x∈(
,
),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0012.jpg?sign=1739286824-MkkbjQCYjawHQoshO1YXUsHZ2EZIELAs-0-a3b95f6e19bbfabc3ba53994df1b0330)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0013.jpg?sign=1739286824-MxIrZ6g6gvCBpeydjmqlnlnaYsVd6oRl-0-7612d669aa20df1de58744032049a93b)
二、证 (1)由,∃M>0使得|an|≤M,且∀ε>0,∃N1∈N,当n>N1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0015.jpg?sign=1739286824-s5qsRbGDooAOfI0Ki1wY3oWADUCshGsn-0-b241cc9808cd7e42c7b0136c95a092b2)
因为∃N2>N1,当n>N2时,.于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1739286824-Cgajr5WJtqVjDde8kAGOHFzGmjhvdUI5-0-63f57742b880a58618a7b385a5d8d2e3)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1739286824-P8oAGgdLyBQjKBIqHCzb0sOxkMxxHD5D-0-eadad5ce039996c76bd8c03977163db8)
(2)对于i=0,1,…,p-1,令,易知{
}为{an+p-an}的子列.
由,知
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0007.jpg?sign=1739286824-FT8cCTVAU8F5vRkU9evmn15zXyfCmxuM-0-d81a34919e4426c7835e3aec59f37666)
而,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0009.jpg?sign=1739286824-vFuWE8PXISXeb2UvqViOkUFC57vvJkOO-0-d968bdbb0d1cf424c073e62fb477bc17)
由,知
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0012.jpg?sign=1739286824-jPdC6zX7h2AxUvLwFWVd47Xh8U9pFzAD-0-591a0313b16941a0ecd24b871e9044a6)
∀m∈N,∃n,p,i∈N,0≤i≤p-1,使得m=np+i,且当m→∞时,n→∞.所以,.
三、证 由麦克劳林公式,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0014.jpg?sign=1739286824-XqauX4QCXlaSOhSsP2DrENBkTpzIBaF1-0-cb2a339d3ae9bf94805e396cd22c687c)
η介于0与x之间,x∈[-1,1].
在上式中分别取x=1和x=-1,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0015.jpg?sign=1739286824-ioKM4JTfz9126cRcWiTJJiiMJcwz4Pdu-0-1f9a82a103ca25fcc39c204657e47d98)
两式相减,得
f‴(η1)+f‴(η2)=6.
由于f‴(x)在闭区间[-1,1]上连续,因此f‴(x)在闭区间[η2,η1]上有最大值M和最小值m,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0016.jpg?sign=1739286824-L7sgEOunX5ngusW6NVS321BvQ1GvbBr8-0-dcaae2e4cc3304f376552c78167989f0)
再由连续函数的介值定理,至少存在一点x0∈[η2,η1]⊂(-1,1),使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0017.jpg?sign=1739286824-q931FCKH08f4yC6Moy9ukWyXLmADLamV-0-dd2c00f1826686a02f592645b1ec9ce0)
四、解 在x轴的x处取一小段dx,其质量是ρdx,到质点的距离为,这一小段与质点的引力是
(其中G为万有引力常数).
这个引力在水平方向的分量为,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0021.jpg?sign=1739286824-ZfNRkZuEuZrT30tw0MGaa2Fx94flndPm-0-bd065d8a533c132067b99f4172fa113c)
而dF在竖直方向的分量为,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0023.jpg?sign=1739286824-QgcfN7RaQy4bintZ7WzSzfN4ATvYsWYO-0-fa2cc2c9180368fd0725a642b73c6a05)
所求引力向量为F=(Fx,Fy).
五、解 对方程两边求导
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1739286824-TKF8rzvCNoz5i1aV7S9h5oblonC9eorS-0-73170f805eb8911a82319c3c73d5c639)
由此解得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0002.jpg?sign=1739286824-uuTSDpz19Sxy4MtWjF81WhLcH5wOVCZB-0-470c040eca8899517f4877f5d9281afe)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0003.jpg?sign=1739286824-OY0JklFm3hib4dDBop6vhLdDqtAhgVpE-0-fdea43b6da15d94e1871b4c0e9b6d71a)
将上式再求导
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0004.jpg?sign=1739286824-zEH3fkCeRYcgX7D4fYZXxGtilhuBN5zl-0-9c952a6fa7113d8b0865de8db545e853)
相加得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0005.jpg?sign=1739286824-QNzYJkztQsm6D0I3MmUCOIiBtgwkBQWp-0-b30fb7b9f6baed7750cdec42c12d264e)
六、解 由Σ的面积为4π可见:当a,b,c都为零时,等式成立.
当它们不全为零时,可知:原点到平面ax+by+cz+d=0的距离是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0006.jpg?sign=1739286824-SCg78n5LBiv6HzPkmx3gGgUVKvSsx412-0-492329d1e71f29cf882a1e2a7be9341f)
设平面,其中u固定,则|u|是原点到平面Pu的距离,从而-1≤u≤1,被积函数取值为
.两平面Pu和Pu+du截单位球Σ的截下的部分,这部分摊开可以看成一个细长条.这个细长条的长是
,宽是
,它的面积是2πdu,得证.