
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
二、神经网络的发展阶段
1982年,物理学家霍普菲尔德发明了以他名字命名的霍普菲尔德神经网络。该网络可以模拟人类的记忆,结合不同的激活函数,用于优化计算和联想记忆。但由于易陷入局部最值,该算法在当时并没有引起轰动。1986年,深度学习之父辛顿与鲁梅尔哈特、威廉姆斯一同提出了一种适用于多层感知机的反向传播(back propagation,BP)算法。事实上,沃伯斯在1974年就发现了BP神经网络的学习算法,但没被关注。BP神经网络在传统神经网络正向传播的基础上,增加了误差的反向传播过程,使得神经元之间的权值和阈值得到不断的调整,直到迭代收敛,并证明了神经网络的全局逼近定理。该模型完美地解决了非线性分类问题,让神经网络再次受到广泛关注。
由于当时计算机的硬件水平有限、运算能力不足,加上当时数据采集困难,这就导致当神经网络的规模增大时,BP神经网络出现了“梯度退化”问题与模型过拟合现象,导致BP神经网络应用受到了很大限制。再加上20世纪90年代中期,以支持向量机(support vector machine,SVM)算法为代表的其他浅层机器学习算法被提出,并在分类、回归问题上均取得了很好的效果(特别是对于小样本数据的分类与回归问题),所以神经网络的发展再次进入了瓶颈期。